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Abstract

A synthesized version of Structural Equation Maadgll(SEM) and its possible
applications in Management problems is presentéé. Main contribution of the paper
is its simple description of a somewhat complextissieal process for the

understanding of the beginners in this domain.dtsaas a initial reading in SEM,

before the researchers delve into more complexstpo of the statistical technique.
The description is largely in English (not statsh and is palatable to readers not
trained enough in the domain of statistics.
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schools.
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1. Introduction:

Structural equation models, also called simultaee@quation models, refer to
multiequation systems that include continutatent variables' each representing@ncept or
construct’, multiple indicators® of a concept or construct that may be continuaudinal,
dichotomous or censored, errors of measuremeneands in equations. One may also view it
as an interrelated system of regression equationsrevsome of the variables (latent or
observable) have multiple indicators and where oreasent error is taken into account when
estimating relationships. From a different pointvidw, these are factor analysis models in
which factor loadings are restricted to zero or sather constants, and the researcher allows
factors to influence each other, directly and iedity. The most general form of the structural
equation model includes Analysis of Variance, Asayof Covariance, Multiple Linear
Regression, Multivariate Multiple Regression, Reowg and Non-recursive Simultaneous
Equations, Path Analysis, Confirmatory Factor Asalyand many other procedures as special
cases. So, the term “Structural Equation Model” NipEefers to a comprehensive statistical
methodology for testing and estimating causal i@tat using a combination of cross-sectional
statistical data and qualitative causal assumptidngke the usual multivariate linear regression
model, the response variable in one regressiontiequan a structural equation model may
appear as a predictor in another equation. Indemhbles in a structural equation model may
influence one-another reciprocally, either directhythrough other variables.

Structural equation models have been discussech®xé&dy in psychological science
(Rabe-Hesketh e. al., 2004; Cole and Maxwell, 20@8thén, B., 1984; Bentler and Weeks,
1980; Bentler and Tanaka, 1982; Bentler and Freerh883; Anderson and Gerbing, 1987,
1991, econometrics (Krishnakumar and Nagar, 2008; MuthE383), social sciences and
guantitative behavioral sciences (Anderson, 198udthign, 1982, 2002; Krishnakumar, 2007,
2008; Netemeyer and Bentler, 2001; Bauer, 2083 management science (Gerbing and
Anderson, 1984, 1988; Anderson, et. al., 1987; Asule 1987; Bagozzi, 1981; Fornell and
Larker, 1981a, 1981b; Bagozzi and Fornell, 1989

Unfortunately, however, researchers in many othieasa of potential applications are
relatively unfamiliar with the concept and its irapilentation. A more generous explanation for
this is, SEM’s are close to the kind of informahtting about causal relation that is common in
theorizing in psychological science, social sciemeel management science and therefore,
researchers in these areas find these models dseftanslating such theories into data analysis.

In section 2 we begin with an example to illustréte use of structural equation
modeling and introduce path diagrams, which areerdid tools for structural equation
modeling. In Section 3 we introduce SEM'’s for thengral case for both causal model and the
measurement model. In this generalized settinglis@uss the model identification in section 4.
In Section 5 we briefly review the estimation of debparameters. In section 6 we consider the
model evaluation and indices of model fits of SEMdata. In Section 7 we consider the
specification problem of measurement model andhis ¢ontext briefly discuss the concepts of
validity, reliability and unidimensionality. In Seon 8 we present a brief but important
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discussion on whether SEM can be considered asusalcanodel. We present concluding
remarks in Section 9.

2. An Example:

We consider an example discussedBiollen (1989 to illustrate the use of SEM in
building atheory® from data. The theory we consider here is, “Indafitation in developing
countries is thought to enhance the chances ofigalidemocracy”. Here Industrialization and
Political Democracy are two constructs and the abtheory is hypothesizing a relationship
between them. It is often called causal relatigmsAt this point we avoid getting into a debate
on what would be the proper definitions of the ¢angs, and what would be the right proxies or
indicators of it. These are, of course, importasues that need to be considered seriously by
every researcher at the outset. It is a common reeqpe of the researchers that after the
preliminary data collection the theory often is natlidated by the data. This may happen
because of faulty definitions of the constructs/andiue to wrong choices of the indicators
and/or due to wrong choice of the causal model. rBsearcher then needs to revise either the
definition of the constructs and/or the choicehs indicators and/or the causal model itself. We
will discuss these issues at the end. However,redemt we assume that the constructs are
properly defined, the indicators are correctly @mwand the causal model is correctly specified.

We define Industrialization as “the degree to whackociety’s economy is characterized
by mechanized manufacturing process”, and Politidaimocracy, as “the extent of political
rights and political liberties in a country”. Bothese constructs are unobservable and are thus
represented in our model by what are called latamtables or unobserved variables. Our
problem is to build and then test the above theSoppose we consider three latent variables,
Industrialization in 1960&(), Political Democracy in 196@{) and Political Democracy in 1965
(n2). Here Industrialization is aexogenous latent variablBand Political Democracy is an
endogenous latent variable The latent endogenous variables are only partitiylained by
the model and the unexplained part, i.e., the nandisturbance in the equation is represented by
. We assume thay, is a function of botlg; andn;. Alson; is a function;. Thus we have two
equations expressing the above causal relationships

M =v11& +G
N2 =Paamty21& +& (2.1)

where,y11 , B21, Y21 are structural parameters and have usual intatpres as in regression
analysis,{; and (; are random disturbances with mean zero and arerneteied with the
exogenous variabl&. The latter assumption is necessary to avoid ethitariable bias.

Notice that here the equations are linear in véeghnd linear in parameters. Non-linear
models are not much in use. Also the variableseapeessed as deviation from its mean values.
So the intercept term is absent. In matrix notafibth) can be re-written as,

Plle, o) b2 e

or equivalently,
n =Bt &+ g (2.3)

I
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whereE (£) = 0andE( &' )= 0. The diagonal elements Bfare zero and the matrix - B) is
non-singular. Model (2.3) is known egusal modelin SEM.

Now, observed variables are not perfectly correlateh the latent variables that they
measure unless the latent variables are themsebhs=yvable. Nearly all measures of abstract
concepts have far from perfect association withldtent variables they represent. We thus have
the following measurement modelinking the latent variables with the observabégiables or
proxies or indicators. The relations are imperfater than deterministic ones.

Let us consider the following indicators for Indimization & Political Democracy.
Three indicators for Industrialization we considee, GNP per capita {} Inanimate Energy
Consumption per capita A Percentage of labor force in industrys)(and indicators for
Political Democracy are, expert ratings of the dicea of the press (yin 1960, ¥ in 1965),
expert ratings of the freedom of political oppasit(y, in 1960, ¥ in 1965), expert ratings of the
fairness of election gn 1960, y in 1965), expert ratings of the effectiveness hed elected
legislature (yin 1960, ¥ in 1965). So the specification of the measuremsodel is

X1=M & +01, =& +32,% =28 *+063 (2.4)
Y1 =haMmit €1, Y5 = Ag Nt &s,

Y2 = As N1t €2, Y6 = ho M2t €6,

Y3 =X M1t €3, Y7 = Ao N2t €7,

V4= A7M1+ €4, Y8 = huam2 + €g. (2.5)

In the above measurement modeltx x;3 stand for indicators of;, y; to y, are the
indicators ofni, ysto yg are indicators of),. Thel’s are regression coefficients of the latent
variables on the observed variables. $fgands;’s are the errors of measurements fand y.

So in matrix notation we can write (2.4) and (2&5)

X =Ax &+, Ax=diag (u, A2, A3)
y= Ayl] + g, Ay =diag 0»4, ...,7\,11). (26)

Now we depict the system of simultaneous systemqoftions given by (2.3) and (2.6)
using apath diagram’ shown in Figure 1. Thelirect effecfof Industrialization 1960 on
Political Democracy 1965 ig,.. The indirect effect®f Industrialization 1960 on Political
Democracy 1965 ig11 B21. Thus the total effect of Industrialization 1960 Ralitical Democracy
1965 isy21+y11 B21. If we consider regression of Political Democrd®65 on Industrialization
1960 without bringing in the intervening variableliBcal Democracy 1960 in the model then
the estimate of direct effect estimates the ovesH#ct rather than the direct effegh. This
might lead to incorrect inference since evepif1:and ., are significantly different from zero
the total effect may not be significant. It is oftealled the effect of omitting intervening
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variable. ldentifying intervening variables is daldn building the model. It demands intimate
domain knowledge and hard thinking on the reseaspart.

3. General Structural Equation Model

SEM has two components viz., the causal model lamdneasurement model. The causal model
shows the linear relation between the latent véegafor equivalently constructs) while the
measurement model shows the relation between theaiiors and the latent variables.

Causal Model:
In general the causal model is written as follows,

n=a+Bn+T&+{ (3.1)

wherea is a vector of intercept term is a mx1 vector of endogenous latent variableséaadn
nx1 vector of exogenous latent variables with mea@amd covariance matris, I" is the m x n
coefficient matrix for the effects df onn , B is the m x m coefficient matrix showing the
influence of the latent endogenous variables o eticer and is a mx1 vector of error terms
that has zero mean and covariance ma#bandcovg, £ ) = 0. Usually the latent variables
andn are assumed to be measured as deviation from @asrieence= 0 and the model reduces
to

n=Bn+ [&+¢ (3.2)
In classical econometrics the simultaneous equatiodel is given by:
By +I'x =y,

wherey represents a vector of exogenous variablexandector of endogenous variables.

"Since the model assumiesB is nonsingular, setting = (I —B)™, it follows that
N=ATE+A;, p,=Alk, Cov () =AT®r" +¥P)AT,
wherep, is the mean vector ar@ov () is the covariance matrix of.

I
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Representation of the System of Simultaneous Equations by Path Diagram
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Note that the latent variable model (3.2) may ba@edently written as

An+(-INEg=C.
It is similar to the simultaneous equation modelept that it is written in terms of latent or
unobservable variables.

Measurement Model:

A test of the theory that the causal model fornesliis possible if we collect data on
observable measures or indicators of the latenabigs. The measurement model specifies the
relation between the indicators and the latentabdes. Supposg represents the vector of p
endogenous observed variables that are indicatbrg, and x represents the vector of q
exogenous observed variables that are indicatos We assume that these are expressed as
deviation from its mearThe measurement model may then be expressed as

y=Anm + g,
X =AE + 8, (3.4)

whereAy andAy are the coefficient matricesando are the errors of measurementsx¥andy.
Also € andé are assumed to be uncorrelated \giindn and with each other. We further
assumée(e)= E(6) = E(m) = E() = 0, Covg) = O, and Cov(d) = @; where®, and®; are the
covariance matrices @fanda respectivelylf ®; and ®;are equal to zero, the structural model
(3.2) reduces to a simultaneous equation model.

After doing some algebra, one can express the @@ matrices of, x and betweely andx

in terms of the unknown model paramet&g Ay, ®, I', ®, and @; which are given in
Appendix 1. It may be worth reiterating that thepemcal evidence of a possible relationship
among the unobserved constructs is housexi (icf. Appendix 1), the covariance matrix of the
observabley(, x). The sample covariance of, k) being a natural estimate Bfis then plugged
into the relationships (A.1) (cf. Appendix 1) tdiegte the value of each of the unknown model
parameters and hence the necessity of derivingcdngponents of the aforesaid matdixin
relation to the unknowns.

It is worth reiterating that the distinctivenesstioé SEM is the separation of the causal model
from the measurement model. This is a broader gémation which does not constrain the
model to assume unique and mono-dimensional meaguréhe constructs in the causal model.
The flexibility available in the model constructitilas an appeal, since most research constructs
(especially in psychological domain) are complerposites of elemental measures where the
basis of their composition are not apparent uptfr8&EM does not require an a priori basis to
construct measures of the latent variables, oth@&n & classification of the measures to their
respective latent constructs. This ensures thawdhee of the composite index of each latent
construct is empirically computed (estimated) fritva data. This flexibility comes at a cost to
the researcher in terms of complications that maseaat the time of estimation. We shall
discuss the issue in the following sections.

I
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4. Model Identification

Following Hayduk (1987) let us illustrate the geleissue of identification with an
example not related to SEM. Suppose a theory cliaissum of two coefficients, say,andf
must be equal to some specific number, while thelave data indicate that the number is10.
Hencea + =10, but what are the values @fand$? There are infinitely many such choices
available that fit exactly. Thus the model consti®irequiring the sum of andf) and the data
constraints (the sum equaling 10) eliminate sone aleestimates af andf (for example 5-6,
7-9 etc.), but the combined effect of both constsais insufficient to determine unique values
fora andg. It is the failure of the combined model and datastmints to identify (locate or

determine) unique estimates that results in the endthe identification problem(Hayduk
(1987)). In such a case the only option is to ingplusther model constraints or data constraints
with the hope of eliminating more pairs of estinsand in the process eliminate the said
(under) identification problem.

Such problems do crop up in the estimation of tBSjiven that there are multiple
unknown parameters and given the non-linear redaligp among the variables, their interactions
may yield innumerable permutations of possibleneste yielding the same outcome. An
example of a similar kind is illustrated in the Agmglix 2 to reinforce the notion of under
identification that poses problems in the SEM.

Without claiming to be rigorous we may say thatdarunder-identified model estimate of
at least one of the model parameters is not uraqdethus unreliable; for an exactly identified
model unique estimates for all the model parametersavailable but estimates of its standard
errors are not available; and for an over-iderdifieodel the estimates of the parameters and also
the estimates of its standard errors are availdibee the over identification the better it is. In
order to build an over identified model startingrfr an under-identified one, either the number
of model parameters be reduced by imposing mearlinghstraints on the model, or the
number of indicators or proxies for each latentalde be increased. For a detailed technical
discussion on model identifiability problem we nefe Bollen (1989).

5. General Method of Estimation:

For a general structural equation model we alwayselan equation like (A.1) where on the left
hand side we haVE, the covariance matrix of the observed variables@nthe right hand side
we have a covariance matrik (8) involving the unknown vector of structural equatioodel
parameter®. In (A.1) the unknown model parametéxg Ay, @, I', ®; and @; comprised. The
matrix X (0) is obtained by using the structural equations.irfsgeneral we solve the equation

X=X (0) (5.1)

for 0 after replacing by its sample counterpart S. Here S is the sapplariance matrix of the
observed variables

I
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For an over identified model we have more than estimate of@ satisfying equation
(5.1). So the question that naturally arises iscilane should we choose? An obvious answer is
the estimate that in some sense would minimizelig&epancy betweedandX (0).

In layperson’s terms, imagine a search algorithmh(aome intelligence) which searches
across innumerable possible valuedand hence oE (0), with the aforesaid intelligence, to

identify the value ob, say,é that gives minimum discrepancy between SEB(Ié ). A typical
exposition of a measure of closeness (minimum esancy) between S arXlis provided in
Appendix 3 for reference.

6. Model Evaluation and model fits

If the Structural Equation Model is true thEr= X (0). Ideally we would then expe&t—X ( 6 ),
the sample covariance residual matrix, to be apprately null. But this is not the case since
sample residuals are affected by several factors:

1. The departure & from X (0)

2. The scales of observable variables

3. Sampling fluctuations

We are interested primarily to detect whether tinectural equation model is correct, or more
precisely how good the model fits the data.

Denoting thei( j)-th element of S anil (é) by s and(}”. respectively, we obtain the ()-th

element of the residual matrix gs- 5ij. If all the residuals in the residual matrix amsipive,

the model plausibly underpredicts covariance; liftla¢ residuals are negative then the model
plausibly overpredicts covariance df£ X (0) then lack of such incongruity may manifest itself
in the sample residuals.

As stated above the departureXbfrom X () may also arise due to differences in the scales of
the observed variables. A larger sample residugl ange since the scale units of one may have
a much larger range than the others. In fact, af thnges of the observed variables are too
different, it may distort the comparison of theidesls. A simple solution to this is to calculate
the correlation residuals—r;, wherer; andr;are {, j)-th element of the correlation matrices

obtained from S and (é) respectively.

To take care of the effect of sample sizes on sagfiuctuations as well as of scalggekskog
andSorbom (1986) proposed a standardized residual fon eamponent of the residual matrix.
It is given by:
(S; -0y (8)
[(0;(0)0; () +0(8))IN]Y?

The numerator represents the residual and the deaton its approximate standard
error. The largest numerical value of the standadiresidual indicates the element that is given

I
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the worst fit by the model. 6deskog andsérbom (1986) also propose Goodness of Fit Index
(GFI) and Adjusted Goodness of Fit Index (AGFI) fiodicating the overall fit of the model if

the model is fitted using maximum likelihood meth@diting (é) = 5, these are given by:
tr[(Z7s-1)]

GFl,, =1 ~
tr[(£79)*]

+1
AGFI,, =1—[Q(2qdf )][1—GFIML].

Note that AGFI is GFI corrected for degrees of dicaa of the model. Similarly they propose
indices for the models fitted with unweighted aneighted least squares methods. For perfect

fit, i.e., when, 3 = Sthese indices are equal to unity. Tests of hypethesn be carried out for
testingz = 2(¢)and also for testing a sequence of nested modetsa Feetailed discussion we

refer to Bollen (1989).

7. Specification of the Measurement Model

The development of SEM with latent variables hasvipled researchers especially in the realm
of social science with considerable means to buwddt, and modify theories. Jéreskog (1970,
1978) used maximum likelihood method to estimagepghrameters of measurement and causal
models simultaneously from the observed correlatfon covariance) matrix. Later they
implemented the methodology in LISREL (J6reskog &iitbom (1978)), a widely used
software of SEM. However, the initial analysis afhmvariably indicates the need for a revision
of either the measurement model, or the causal hoydeoth. It is always advisable to think of
the modeling process as the analysis of two coneélptdistinct models: measurement model
and causal model (Gerbing (1979), Joreskog ando®orfi978)). The reason for drawing a
distinction between the measurement model andadbeat model is that proper specification of
the measurement model is necessary before meaamppe ascribed to the analysis of causal
model.

The SEM provides the flexibility to construct a gealized model where, the measurement of
the constructs is not tightly defined by the distimeasures (for instance, if unidimensionality is
not prescribed). While conceptually such models exist and, is to an extent a cause for the
growing popularity among some segment of reseasclark of distinct identity of the construct
by its corresponding measures can lead to sever@e() identification problems during the
estimation the model. Hence, a good measuremenglndthe latent variables is prerequisite to
the analysis of causal relations among the latenables.

There are four stages in the specification of @asnrement model. First, a theoretical
definition of each construct should be put forwakdtheoretical definition explains in simple
and precise terms the meaning of a construct. énetkample introduced at the outset, the
construct ‘Political Democracy’ is defined as “thetent of political rights and political liberties
in a country.” Once we define the construct, ithelsions are identifiable. Dimensions are the
distinct aspects of a construct that is not furtdeisible into components. The dimensions
attached with the construct ‘Political Democracse,aPolitical Rights’ and ‘Political Liberty’.

T
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Now for each dimension in the example above twadcatdrs or observable measures are
considered. For ‘Political Rights’ the measuressudered are ‘Expert Ratings of the Fairness of
Election’ and ‘Expert Ratings of the Effectivenesshe Elected Legislature’ and for ‘Political
Liberty’ these are ‘Expert Ratings of the FreeddrRalitical Opposition’ and ‘Expert Ratings of
the Fairness of Election’. Once the measures ametiited, we specify the relation between the
measures and the latent variables.

Thus the four steps in the specification of a mesment model are, (i) define the constructs, (ii)
identify the dimensions and the latent variabl&g, f{nd the measures or indicators and, (iv)
specify the relation between the measures andatbatlvariables.

In testing a theory using SEM, once the conceptsheoretical constructs are defined the
researcher estimates each construct using a pasi@tbn between it and multiple indicators.
The estimation and testing of the posited relatignby using SEM methodology is often called
the confirmatory factor analysis'® (Holzinger, 1944; Joreskog 1966, 1969) in contrast
exploratory factor analysis™.

However, during the model specification, the reslear has to answer a few important questions.
Most important is; do the selected indicators meadhe construct they are supposed to
measure? In other words, are these indicators vakésures of the underlying construct?
Further, validity of the indicators is not enough énsure a good specification of the
measurement model. Even if these are valid, we neederify whether the indicators are
reliable. By reliability of an indicator we meari, the indicator is measured repeatedly, the
measurements should be consistent. So the spéicifict a measurement model may be reliable
without being valid or may be valid without beingliable. For example, if a faulty instrument
measures weight always five kg less than the adiu@lmeasurements are not valid but reliable.
On the other hand, if the instrument gives highdyiable measurements centred on the actual
weight, the measurements are valid but not reliablering the measurement process viz.,
specification of the measurement model, it is tinusortant to verify whether the measurement
process is valid and reliable. If a measurementgs® fails in ensuring either validity or
reliability or both, the estimated causal relatlups between the constructs would consequently
be invalid or unreliable or both. Various conceptsvalidity and measures of reliability are
available in the literature. For a detailed discwssve refer to Bollen (1989). Finally, the
researcher needs to verify whether the set of atdis defining each construct is
unidimensional or congeneri¢? (Aaker and Bagozzi (1979), Bagozzi (1980) p.1259eskog
(1970)). Lack of unidimensionality most often reggets a measurement model misspecification
and unfortunately, a number of misspecificationshag kind typically occur with initial models.
There are various methods proposed (Anderson ambir@e(1982), Anderson, Gerbing and
Hunter (1987), Anderson and Gerbing (1991)) inliteeature to verify unidimensionality of the
measurement model. However, some researchers fafjotzi and Fornell (1989))
unidimensionality is a concept difficult to establiempirically.

8. SEM and Causality

Following Bollen (1989) let us briefly discuss tb@encept of causality. Consider a variable y
which is isolated from all influences except fronsecond variable called x. If a change iny

I
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accompanies a change in x, then x is associatédywinh order to establish x causes y, we must
ensure that the association is due to x causingtythe other way around. The definition of
causality has thus three components, (i) Isolati@i, Association and (iii) Direction of
Causation.

We consider a simple illustrative example. Supposgpresents the incidence of lung cancer for
each state in India. An argument that may be pwtdad is, since every case of lung cancer has
a unique and unpredictable origi,is a random disturbance term representing the taah
effect of innumerable infinitesimal causes.

So the model is

y=¢ (7.1)

whered represents the disturbance term. This model represige position of an extreme skeptic
who believesy is incapable of being systematically explainedoliyer variables. On the other
hand a closer look af’ may lead to the discovery of one or more varigbhdsich could be

meaningfully brought into the model. The simplessianption may be{ consists of a single

variable, say, the number of smokers (x) in théesté/e then assume a simple mogel f(x)
connecting y to x. To make it simpler, we assume

y = pBX. (7.2)

But most of us would feel uncomfortable with mo@&R). It looks like an assumption almost
certainly not true. Most of us may be comfortablehwa model which is between the two
extremes represented by (7.1) and (7.2). A reasemabdel is,

y=p0x+(. (7.3)

Note model (7.3) clearly violates the condition igblation. The disturbance terngis

unobserved. We cannot control it. Isolation beimpassible, we define what is callpdeudo
isolation condition. To assume is isolated frond’, a simple assumption may be is
uncorrelated witly’. This is the condition implicitly assumed by masassical econometric
models. However, pseudo isolation is nearly imgmedio attain because of left out intervening
variables, reciprocal causation, wrong model spetibn, presence of measurement errors,
correlated disturbances, nonrandom sample seleetmnRegarding the direction of causality,
the single most effective means of proving it iseiablish temporal priority. This does not
always work. Also it is not always clear that temgdriority is met especially when the models
involve latent variables and its indicators. To su proving causality beyond any doubt does
not seem to be a practical proposition.

A misconception that is prevalent among the SEMaugethat it establishes causality.
Our discussion above shows that for demonstrataugality isolation from the effects of other
variables must be ensured, association must bertrated and direction of causality should be
established. In almost all applications of SEM ¢heonditions are not met. Most SEM
applications are best viewed as potential explanatifor whether the causal relationship

I
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envisaged in the model is consistent with the detany researchers (Bullock et. al., 1994;
Hoyle and Smith, 1994; MacCallum et.al., 1993) ayoausal inferences from such models are
rare and possibly ill advised. Through putative idpgstrong theoretical arguments, and
longitudinally collected data one can strengthezaasal argument. Ultimately it is the design,
not the statistical method, (i.e., SEM), that pésntausal hypotheses to be adequately tested
(Bullock et. al., 1994; Campbell & Stanley, 1963y and Smith, 1994; Sobel, 1993). Cliff
(1983) presented a sobering reminder on this ibgutating, “data do not confirm a model, they
only fail to disconfirm it”. It indeed echoes Popseview, verification is impossibility, only
falsification is possible. It is indeed unfortuaahat numerous articles are written from a
perspective, as if, we seek to confirm that our etedit. Cliff continues further, “when data do
not disconfirm a model, there are many other modk& are not disconfirmed either”.
MacCullam et.al.(1993) demonstrated that there w@st@nomical number of alternative models
published in prestigious journals that would havevwled the equivalent fit. If we seek to make
a causal statement, we would best operate expemtherThe most satisfactory, almost the
only satisfactory, method for demonstrating catygadi the active control of variables” (CIiff,
1983).

9. Concluding Remarks

A researcher's model should pass the tests of Bdibdel-Data Consistency” and
“Model-Real-world Consistency” (Bollen, 1989) in daer to be relevant and useful.
Unfortunately, however, most applications of SEMt the former and only implicitly assume
the latter. The reason is, checking “Model-Data €£istency” is considered to be an inseparable
part of SEM methodology and is checked by lookinngdiscrepancy between and S, its
magnitude, sign and statistical significance. Gndther hand “Model-Reality Consistency” is a
more “slippery” issue and is not directly verifialftom data. Here the question that a researcher
should ask is, does the model mirror the real wbi@hecking this consistency thus needs
intimate knowledge of how the “real’ world worksa practice we imperfectly evaluate the
“Model-Real-world Consistency” of a model by itsedictive validity (its power in predicting
future events) or by cross-validating (validatiig tmodel) it with independent data sets. “It is
tempting to use model-data consistency as proohadel-reality consistency” (Bollen, 1989),
but it would be misleading. “Model-Reality Consistg” clearly implies “Model-Data
Consistency” but rarely the other way around.
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Appendix 1
Covariance Matrix of the Observed Variables

We provide the algebraic formulations of variousyponents of the information matrix

Tywyv=Ay [A TOTT+P) A'] Ay'+ O,
Txx=Ax® Ax' + O (A1)
Tyx=AyAT @ Ax',

where covy) = Xyy, cov) = Xxx and cov Y, X) = Xyx. From (3.4) - (3.7), it follows that the

covariance matrix of the observed variables magxpeessed as,

2. 2.
Z:cov(y,x):[ Y YX}.
ZXY ZXX

An important special case wherendx are observed without error is obtained from theegal
model by fixingAy =1, Ax=1, @s=0and®, = 0.

The details of the formulations are provided in eialy (1989, chapter 4)

Appendix 2

Identification Problem in SEM:

We now illustrate the problem specifically in thentext of SEM with a simple
hypothetical example assuming that latent variahtesperfectly correlated with the measurable
variables, in other words in classical simultaneegsation model set-up. Suppose we consider a
model with endogenous variables y» and an exogenous variable Xhe model is,

Y1=y11 X+, (A2.1)

Y2=Pary1+ G2
whereyis, P21 are the regression coefficients dadl, are the random error terms satisfying

Cov (1, 1) = Cov(1, {) = Cov(2, x) = 0. Consistent with the notation introduced3r2j we
have

[o o] __[Vul,_[¥n O _
=g, o L) ) et roo

Consider now the equation obtained from (A2.1)

T
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yl yllxl + Zl
Cov y, |=CoV By, +{, |,
X X
which may equivalently be written as follows,
var(yl) y121¢11+l//11
COV( Yoo M) Var()é) = ﬁZl(Vifan// 11) :32210/215? 1I"w 1).+¢/ 22 ' (A2'3)
Cov(x, y) Coyx y var(y Vif By @ [

Evidently the elements of the matrix on the lefbdhaide of (A2.3) can be estimated from the
sample variances and covariances of the obserwalables. Also the sample values of the
elements of the matrix on the left hand side reprethe data constraints while the matrix on the
right hand side represents the model constrainfsating the elements of the matrices in (A2.3)
component-wise we have six equations in five unkmovolving these we obtain the following
estimates,

@11 = var(x) Y11 = cov(x, Y1)/ var(x), B21 = cov(x, Y2)/ y11011
w11 = var () —v11°@11, Or [Cov(, Y1)/B2al- Y11 @11,
W22 = var () — B 217(y1d” e + ya). (A2.4)

Here the model is said to be over-identified, snweehave two sets of unique estimates of
the parameters corresponding two choices of themat ofy;;. In other words, here is a
situation where we have more than one subset @ti@nts each leading to a unique set of
estimates of the parameters. On the other hatitk ifonstraints lead to a single set of unique
estimates, the model is called exactly identifilge above model becomes exactly identified if
we assume that Coli( {o) = y1o. If we augment the above model further by replgein= B21
y1 + Co with yo = B21 Y1 +y21 Xat+ {2, the number of data constraints would then bedessthan
the number of unknown parameters, and hence naesiet of estimates would be available.
The model would then become under-identified odentifiable.

Appendix 3

Estimation Methods of Structural Equation Paranseter

A measure of closeness betweéeandX (0), say, F§, X(0)) should satisfy the following natural
conditions:

T
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0] FES,X(0)) is a scalar,

(i) F(S,Xx(0)) >0,

(i)  F(S,x(0)) =0 iff £(0) = S,

(iv)  F(S,X(0)) is continuous irg, X(0).

Conditions (i)-(iii) are the properties that anyanare of discrepancy should satisfy. The
measure F§,Xx(0)) is known as discrepancy function. A method dinesgtion is characterized by
its choice of the discrepancy function. We giveolethe choices corresponding to the standard
estimation methods,

Maximum Likelihood Method:

F(S,Z () =log| £ (6)| + trace5 = (0)] —log | S| - (p+q)

Unweighted Least Squares Method:
F(S,X(0)) = 0.5 trace$- X (0)] 2
Generalized Least Squares Method:
F(S,Z(0))= 0.5 trace [{6-X (0)) W'}?]

The default choice of weight matrix W in almost@EM software is S which reduces the
discrepancy function to B(X (8))= 0.5 trace [{(- £ (8)) S*}?].The estimation method then

uses an iterative procedure to minimiz& B{(0)). If @ minimizes FG,X(0)) then it is taken as
an estimate of.

Glossary

1. Latent variables: Latent variables are hypothetical or unobservedabbdes. These are not
directly observed but are rather captured usingratbservable variables.

2. Construct (Concept):A construct or equivalently a concept is an ided tinites phenomena
like attitudes, behaviours, traits etc. under glsinerm. For instance the construct ‘terrorism
provides the common element tying together divefesments such as ‘threat’, ‘use of violence’
‘destruction of properties or lives of people’ mdividuals or groups for political purposes to
shock or intimidate a target group wider than timenediate victims. The construct ‘terrorism’
acts as a summarizing device to replace a lispe€iic traits that an individual or a group may
exhibit. Do constructs really exist? They are a8 o as unreal as other ideas. They are created
by people who believe that some phenomena havetBmgen common. The measurement
process begins with the definition of a construct.

I
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3. Observed (manifest) variables or Indicators:Variables that can be directly measured or
observed. It is the opposite of a latent varialktbjch cannot be directly observed. Manifest
variables are used in measuring the latent vasaMedels that connect the latent variable to the
observed variables are called latent variable nsoddhnifest variables are considered either
continuous or categorical.

4. Theory: A theory is an abstract set of ideas that linksetgr constructs or concepts. For
example we may desire to test a theory, “Democvamks as a deterrent to terrorism.” Here the
theory connects the two constructs, ‘democracy’ ‘trdorism’.

5. & 6. Endogenous and Exogenous variable3he terms endogenous and exogenous arise in
the context of a model connecting several variabdesariable is called endogenous if it is
explained within the model in which it appears. @& other hand a variable is called exogenous
if it is determined by causes outside the modet.éxample the loyalty ) of a customer to a

soft drink brand is determined by trusf,f on the brand and the tasté,) of the customers.

Trust is a variable determined by the model conngdbyalty to trust and taste, but taste is
usually caused by factors outside the model. Thust &and loyalty are endogenous while taste is
exogenous.

7. Path Diagrams:It is a pictorial representation of a system of idlaneous equations. To
understand a path diagram one needs to defineathe fymbols used in such a diagram.

In the following we show it.

Basic symbols used in Path Diagram

X1 Rectangular or square box represents an olzseareable

@ Circle or ellipse represents a latent variable

< ) A Y1 Unenclosexdiable represents an error term

Sytai arrow signifies that variable at base of threwar‘causes”

variable at head of arrow aidepresents the regression afofin,
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Curved two-ted arrow signifies assumed association between
the two vénles

Two single-headed arrows connecting two variablgsifees
Radcipal causation

8. & 9.Direct, indirect and total effects: Path analysis classified into three types of effect
direct, indirect and total effects. The direct effes the influence of one variable on another that
is unmediated by any other variables in a path mdde indirect effect is provoked by at least
one intervening variable. The sum of the direct mlttect effects is the total effect.

11. Exploratory Factor Analysis:

Let us consider the model

Xi=hig E1t.onn + ig &gt Oi

whereX’s (i = 1,...,p) are the indicator variables ags are the latent variables representing the
constructs or factors anif's are uncorrelated random disturbance terms wétfianceso;>’s.
Defining X = Xy,....%0)", & = En.--8) s A,= (AgreAg) i =1, pA=(4,,....4,) and Cov

() = | we have Co) =AA'" + diagcs?, ...... 0,°).S0 unidimensionality is not achieved.
However, by respecifying the model, sometimes unggtisionality could be achieved.

In an exampleGerbing & Anderson (1988) showed that exploratory factor analysis
identifies two factors each substantially loadingfive indicators. However, unidimensionality
is achieved by removing two indicators from the elod

In exploratory factor analysi&,....... &q are called the common factors a&ts are
called the specific factors. If factor analysis k&rwe expect diags(,......,5,°) =0, then Cov
(X)=AA'. Hence the covariance matrix of theéndicator variables can be approximateddpy
factors. Usuallyg is much less thap. Now using spectral decomposition of Ca{),(we have
Cov (X) = P diag(,...,0p) P" whereP = (P1,...,Py), Pa,...,Pyare the eigen vectors ang...,a,
are the eigen values of CoX)( Now if for P° = (P1,...,Py) where g<p, Cov (X)=

P'diag(s,...,aq)P" the factor loading matrix is given byl =P’ diag(a,’?.....a;"%).

I
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10. Confirmatory Factor Analysis:

In exploratory factor analysis the researchertledsdata speak on the appropriate number
of factors to extract along with the estimatiorfadtor loadings. In confirmatory factor analysis
on the other hand the researcher has theoretiaabme or past empirical evidence to believe
they could predict the number of factors, and itreare cases the actual values of those
loadings. A confirmatory factor analysis presupgog® factor structure and thus specifies the
measurement model. In our discussion, above weresshat the measurement model is pre-
specified at the outset. The model is then estidhatel finally we verify whether the data fit the
model. In doing so often we need to revise the rhdde to its misspecification. In SEM this is
often considered as confirmatory factor analysise Bnalysis is carried out using standard
software like LISREL and AMOS. However, some (Stegwa001) believe this is nothing but
exploratory factor analysis camouflaged under tla@nler of confirmatory factor analysis.
“Merely suggesting a structure and showing tha& diathe suggested structure is not a genuine
exercise in confirmatory factor analysis. An acebp use of LISREL as a confirmatory tool
requires at least three conditions:

1. A genuine, strong theory that posits a strong amambiguous structure of
relations among constructs and the variables #paesent these constructs.

2. There must be a strong and unambiguous a priarctsire that serves as the
basis for the test of fit.
3. The fit of the data to the a priori structure mistbetter (by some acceptable

criterion) than fit to the structure suggested lgraative theories; alternative
structures that would be consistent with the themakfoundation; intuitively
obvious alternative structures; or structures toatld be readily explained on
methodological grounds, such as the presence biyhigrrelated error terms.

The others feel that variants of factor analyssusth be placed in a continuum,
with exploratory factor analysis on one end andficoatory factor analysis in
the strictest sense is at the other end.

12. Unidimensionality

For measurement of a construct we use more thanm@asures or proxies, considered to be
alternative indicators of the same construct. A posite score corresponding to a respondent is
generally calculated as an unweighted sum of theessores or proxies and is supposed to provide
an estimate of the corresponding concept or cottst@omputation of the composite score is
meaningful if the measures are one-dimensionalat&hset of items forming an instrument all
measure just one thing in common is most critical basic assumption of measurement theory”
(Hattie, 1985)
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The mathematical definition of unidimensionality based on the traditional common

factor model in which a set of indicatorgsXshare only a single underlying factorAssuming
linearity, the measurement model is given by

Xi=h& +8

where, is the factor loading andl is the random error.
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