

What Explains Current Account Surplus in Korea?

Han Chirok and Shin Kwanho

The Korea Institute for International Economic Policy (KIEP) was founded in 1990 as a government-funded economic research institute. It is a leading institute concerning the international economy and its relationship with Korea. KIEP advises the government on all major international economic policy issues and serves as a warehouse of information on Korea's international economic policies. Further, KIEP carries out research by request from outside institutions and organizations on all areas of the Korean and international economies by request.

KIEP possesses highly knowledgeable economic research staff. Our staff includes many research fellows with PhDs in economics from international graduate programs, supported by dozens of professional researchers. Our efforts are augmented by our affiliates, the Korea Economic Institute of America (KEI) in Washington, D.C. and the KIEP Beijing office, which provide crucial and timely information on local economies. KIEP has been designated by the government as its Center for International Development Cooperation and the National APEC Study Center. KIEP also maintains a wide network of prominent local and international economists and business people who contribute their expertise on individual projects.

KIEP continually strives to increase its coverage and grasp of world economic events, and expanding cooperative relations has been an important part of these efforts. In addition to many joint projects in progress KIEP is aiming to become a part of a broad but close network of the world's leading research institutes. Considering the rapidly changing economic landscape of Asia, which is leading to further integration of the world's economies, we are confident that KIEP's win-win proposal for greater cooperation and sharing of resources and facilities will increasingly become standard practice in the field of economic research.

HYUN Jung Taik
President

Korea Institute for International Economic Policy 370 Sicheong-daero, Sejong-si, 30147, Korea Tel. 82-44-414-1251 Fax. 82-44-414-1144 www.kiep.go.kr

What Explains Current Account Surplus in Korea?

Han Chirok and Shin Kwanho

KOREA INSTITUTE FOR INTERNATIONAL ECONOMIC POLICY (KIEP)

Building C, Sejong National Research Complex, 370, Sicheong-daero, Sejong-si, Korea
Tel: 82-44-414-1251 Fax: 82-44-414-1144

URL: http://www.kiep.go.kr

HYUN Jung Taik, President

KIEP Working Paper 16-15 Published December 16, 2016 in Korea by KIEP ISBN 978-89-322-4266-8 978-89-322-4026-8(set) Price USD 3

©2016 KIEP

EXECUTIVE SUMMARY

Some countries have persistent current account surplus, contributing to global imbalances up to a level that is worrisome. For example, Germany has been continuously experiencing current account surpluses since 2002, amounting to 8.4% of GDP in 2015. China has never experienced current account deficits since 1997, the year that data is first available. Japan's record is even longer; its consecutive current account surplus started from 1981. Recently, Korea joined this large current-account surplus club: since the currency crisis in 1997, Korea's current account balance has been continuously in the black, expanding even more in these recent years.

In this paper, we present an empirical methodology that explains how current account balances are determined and by employing it, try to diagnose factors that account for Korea's current account surplus. In fact, the IMF has introduced a methodology, the External Balance Assessment (EBA: Phillips *et al.*, 2013), to assess exchange rate and current account gaps that are defined as the difference between current levels and those consistent with fundamentals. For example, the 2016 External Sector Report, by utilizing this methodology, demonstrates that Korea's real effective exchange rate in 2015 was 4 to 12 percent undervalued than the level consistent with fundamentals.

While the IMF's EBA is a state-of-the-art methodology that incorporates major studies in the literature, we feel that it has some limitations when analyzing the movements of Korea's current account balances. The method implicitly assumes that the current account surpluses of these countries will be substantially reduced by changing the exchange rate. However, the current account surpluses of Korea cannot be explained by the exchange rate alone. After the global financial crisis, despite rapid appreciation of the real effective exchange rate, Korea's current account surplus has been continuously increasing.

Korea experienced a currency crisis in 1998. Since then it has experienced continuous current account surpluses. The current account surpluses just after the crisis were extremely helpful for the economy to recover from the crisis. Man-

aging a modest level of current account surpluses has also been beneficial for the economy in preventing future crises. However, Korea's current account surplus in 2015 amounted to 7.7% of GDP, causing a concern that it may be too excessive. This exorbitant reliance on external demand can escalate political pressures from trading partners to appreciate the exchange rate. It is also argued that maintaining more balanced demand sources by giving domestic demand a greater role is essential for a sustained growth path.

In this paper, we investigated underlying reasons as to why Korea's current account surpluses are widening. We found that the upward trend in Korea's current account surpluses is essentially explained by demographical changes it is currently experiencing. Moreover, we show that since Korea's population is rapidly aging, its current account surplus is expected to disappear by 2042 as it becomes one of the most aged economies in the world. In fact, demographical changes are so powerful that they explain quite successfully the trend of current account balances of other aged economies such as Japan, Germany, Italy, Finland and Greece as well. However, demographics do not explain crosscountry differences in the level of current account balances, i.e. the high level of Korea's current account surpluses is mainly explained by a country fixed effect. When we add the real exchange rate as an additional explanatory variable, it is statistically significant with the right sign, but the magnitude explained by it is quite limited. For example, in order to reduce current account surplus by 1 percentage point, a whopping 12% depreciation is needed. Since other economic variables are yet included as explanatory variables, this can be considered to be the maximum estimate of the effect of the exchange rate changes. If it is true that Korea's current exchange rate is 4 to 12 percent undervalued than the level consistent with fundamentals, it is impossible to reduce Korea's current account surplus to a reasonable level by adjusting the exchange rate alone. Another possibility to reduce current account surplus is expanding fiscal policies. We find, however, that the impact of fiscal adjustments on current account surplus is even more limited. According to our estimates, reducing current account surplus by 1 percentage point requires a 5-6 percentage points increase in budget deficits (as a ratio to GDP).

The above impacts of exchange rate and fiscal policy adjustments are estimated

without considering the endogeneity of these policy variables. If we allow endogenous movements of these variables, the impact of exchange rate adjustment is 1.6 times larger, while that of fiscal policy decreases so that it is no longer statistically significant.

When we add other economically fundamental variables such as GDP gap, oil prices, net foreign asset and so on, they contribute to explaining short run fluctuations without much improvement in explaining the trend nor country fixed effects. On the other hand, while the upward trend in Korea's current account surplus since 1997 is mainly explained by demographical changes, the current level of current account surplus, i.e. 7.7% of GDP, is placed quite above the fitted line derived by the economically fundamental variables including demographical changes.

This idiosyncrasy of Korea's current account surplus seems to be related to increasing saving propensity of households especially among aged people. However, we will need further detailed analyses for more rigorous evidence to support this argument.

Keywords: Current account surplus, real exchange rate, budget surplus, global imbalances **JEL Classification**: E17, E62, F32, F42

CONTRIBUTORS

Han Chirok

Professor of Economics at Korea University. He received his B.A. and M.A. in economics from Seoul National University and Ph.D. in economics from Michigan State University. He taught at Victoria University of Wellington, New Zealand, and University of Auckland, New Zealand. He was awarded Multa scripsis (Econometric Theory, 2015), Cheongram Academic Award (Korean Economic Association, 2012), Research Excellence Award (University of Auckland, 2007), and the A R Bergstrom Prize in Econometrics (Econometric Theory, 2003). He has published articles on econometrics in a number of leading academic journals including Econometrica, Journal of Econometrics, Econometric Theory, and Journal of Business and Economic Statistics.

Shin Kwanho

Professor of Economics at Korea University. He received his B.A. and M.A. in economics from Seoul National University and Ph.D. in economics from UCLA. He was Assistant Professor at the University of Kansas for four years and occasionally taught at UCLA, Claremont Graduate University and Claremont McKenna College as a visiting professor. He was elected as "One of the Fifty Future Leaders in Korea" by the Seoul Economic Daily in 2010 and a MaeKyung Economist by the Maeil Business Newspaper in 2011. He also served as a council member for the National Economic Advisory Council from 2010 to 2011. He has published widely on the subjects of business cycles, monetary economics, international finance and labor economics in a number of leading academic journals including American Economic Review, Journal of Monetary Economics, Journal of Econometrics, Journal of Money, Credit and Banking, Journal of International Economics, Journal of International Money and Finance and Journal of Labor Economics.

CONTENTS

Executive Summary	3
Contributors	6
1. Introduction·····	9
2. Korea and Global Imbalances·····	12
3. Data and Methodology ·····	18
4. Decomposition of Korea's Current Account Surplus ·····	23
5. Policy Implications ······	35
6. Conclusion ·····	40
References·····	43

TABLES

Table 1.	Largest current account deficit and surplus countries, 2006,	
	2013 and 2015	14
Table 2.	Source of data ·····	20
Table 3.	The three basic models	22
Table 4.	Fixed effects regression results for the three basic models	23
Table 5.	Trend in Korea's current account and its prediction by Models 1 and 2	28
Table 6.	Decomposition of Korea's current account change in comparison	
	to 1980-2010 average	31
Table 7.	Fixed effects regression results for modified models	33
Table 8.	System GMM estimation of dynamic panel data models	38

FIGURES

igure 1.	Global Imbalances of Current Accounts12
igure 2.	Korea's Current Account Balances and the real effective exchange rate17
igure 3.	Population coefficients in Model 1 ······25
igure 4.	Prediction of Current Account by Model 126
igure 5.	Future trend forecast of Korea's current account by demographic changes
	(Model 1)28
igure 6.	Prediction of Current Account by Model 229
igure 7.	Average propensity to consume by age group in Korea in 2011 and 2013 32
igure 8.	Prediction of current account by modified Model 234

What Explains Current Account Surplus in Korea?

Han Chirok[†] and Shin Kwanho^{††}

I. Introduction

A Perpetual and large current account balance surplus is not desirable for any country or its neighboring countries as a whole.¹ However, some countries have persistent current account surpluses, contributing to global imbalances up to a level that is worrisome. For example, Germany has been continuously experiencing current account surpluses since 2002, amounting to 8.4% of GDP in 2015.² China has never experienced current account deficits since 1997, the year that data is first available. Japan's record is even longer; its consecutive current account surplus started from 1981. Recently, Korea joined this large current-account surplus club: since the currency crisis in 1997, Korea's current account balance has been continuously in the black, expanding even more in

^{*} We appreciate Sung-Chun Jung, Doo Yong Yang, Jae Rang Lee, Jong-Wha Lee and Deok Ryong Yoon for their helpful comments at the KIEP-IMF conference. We also thank Jimin Oh and Sul Wi Shin for their excellent research assistance and KIEP for financial support.

[†] Department of Economics, Korea University, 5-1 Anam-Dong, Sungbuk-Ku, Seoul, KOREA 136-701, chrokhan@korea.ac.kr

^{††} Department of Economics, Korea University, 5-1 Anam-Dong, Sungbuk-Ku, Seoul, KOREA 136-701, khshin@korea.ac.kr

See, for example, Blanchard and Milesi-Ferretti (2011), for reasons why current account balances should be reduced.

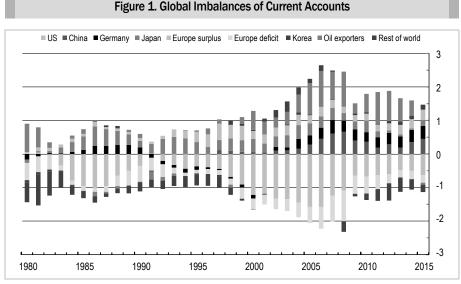
² Current account data are obtained from IMF's World Economic Outlook Database.

these recent years.

So why do these countries enjoy current account surpluses for such a prolonged period of time? In this paper, we will present an empirical methodology that explains how current account balances are determined and by employing it, try to diagnose factors that account for Korea's current account surplus. In fact, the IMF has introduced a methodology, the External Balance Assessment (EBA: Phillips *et al.*, 2013), to assess exchange rate and current account gaps that are defined as the difference between current levels and those consistent with fundamentals. For example, the 2016 External Sector Report, by utilizing this methodology, demonstrates that Korea's real effective exchange rate in 2015 was 4 to 12 percent undervalued than the level consistent with fundamentals.

While the IMF's EBA is a state-of-the-art methodology that incorporates major studies in the literature, we feel that it has some limitations when analyzing the movements of Korea's current account balances. First, while the EBA methodology states that demographical changes are one of the most crucial factors in explaining the movement of current account balances, neither old dependency nor youth dependency ratio is significant in its estimation. We believe that old dependency and/or youth dependency ratio is limited in fully representing all demographical changes, and that the impact of aging on current account balances is better captured by tracking down changes in the entire age distribution instead. The reason is that, as shown by Lee and Shin (2016), in some cases, the working population share can rise even when the dependency ratio increases if the youth ratio is rapidly shrinking.

Secondly, the IMF's EBA methodology includes a dummy variable for oil exporting countries as an explanatory variable in the current account estimation, which recognizes that oil exporting countries tend to have current account surpluses. A positive coefficient for the dummy variable is justified since these countries need to accumulate current account surpluses to prepare for the future when oil reserves will be depleted However, as will be illustrated in the next section, a number of oil exporting countries experience current account


deficits in 2015 due to a drop in oil prices. Rather, oil-importing countries such as Korea are experiencing an increase in current account surpluses. Hence, the dummy variable does not appropriately explain the recent movements of current account balances of oil-exporting versus oil-importing countries. In this paper, we will instead utilize information on both oil exports and imports of individual countries as well as oil price changes in the current account estimation. This way, an increase in the current account surplus of oil-importing countries can be attributable to declines in oil prices.

Lastly, as will be shown in the next section, exchange rate movements cannot explain the recent increase in Korea's current account surplus. By calculating the exchange rate gap, the IMF's EBA methodology suggests that adjusting the exchange rate will decrease current account surpluses. However, there are a number of other factors that explain current account balances, and in Korea's case, the exchange rate movement does not seem to contribute much to reducing the recent increase in current account surplus.

The remaining part of the paper is organized as follows. In section 2, we will explain the latest trend in global imbalances and how Korea' current account surplus contributes to them. Section 3 introduces our empirical methodology and describes the data used for it. In section 4, by utilizing the empirical methodology, we will decompose Korea's current account surplus into portions explained by main factors. Section 5 draws policy implications from the analyses and section 6 concludes

2. Korea and Global Imbalances

Global current account imbalances narrowed significantly after the global crisis broke out in 2008 and then have more or less stabilized since 2009. Figure 1 shows the current account balances of the world where it is divided into the U.S., China, Germany, Europe surplus, Europe deficit, oil exporters, Korea and the rest of the world. The sum of the absolute values of current account balances peaked at 4.9% of the world GDP in 2006 and then decreased to 2.8% in 2009. They rebounded slightly until 2012 and decreased back to 2.6% in 2015.

Note: European countries are sorted into surplus and deficit countries each year depending on the signs of their current account balances. Oil exporters are the same as those in Figure 1 of World Economic Outlook, 2014: Algeria, Angola, Azerbaijan, Bahrain, Bolivia, Brunei Darussalam, Chad, Republic of Congo, Ecuador, Equatorial Guinea, Gabon, Iran, Iraq, Kazakhstan, Kuwait, Libya, Nigeria, Norway, Oman, Qatar, Russia, Saudi Arabia, South Sudan, Timor-Leste, Trinidad and Tobago, Turkmenistan, United Arab Emirates, Venezuela, Yemen.

Source: Authors' calculation based on IMF's World Economic Outlook Database.

However, if we focus on the current account balances of the U.S. and China, the two largest deficit and surplus countries in the world, we can notice some worrisome movements in the most recent years. These two countries were the main contributors to the decrease in global imbalances from 2006 to 2012.³ The U.S.'s deficit surged to -5.8% of its GDP in 2006, shrunk to -2.7% in 2009 and then further waned to -2.2% in 2013. China's surplus shows a similar path but in a symmetric way: it peaked at 9.9% of GDP in 2007 and decreased to 1.5% in 2013. However, the U.S.'s deficit and China' surplus bounced back to -2.6% and 3.0% of GDP respectively in 2015. Although China's current account surplus as a percentage of its own GDP decreased compared to that of 2007, the rapid growth China experienced results in its surplus in terms of the world GDP to bealmost identical to that of 2006 (0.45%).⁴

Table 1 presents the top 10 largest deficit and surplus countries in 2006, 2013 and 2015. We use these years as these each represent, respectively, the year of the largest global imbalances, the smallest global imbalances since 2006 and the most recent period. While the U.S. has always been the largest deficit country, China and Germany alternated as the largest surplus country. Table 1 also shows that oil exporting countries such as Saudi Arabia, United Arab Emirates, Kuwait and Qatar that are listed as the top 10 surplus countries in 2013 all disappeared in the list of top 10 surplus countries in 2015, contributing to the mitigation of global imbalances. Hence, the recent aggravation of global imbalances by the U.S. and China has been offset by the shrinking current account surpluses of oil exporting countries.

_

³ Oil exporters' current account surplus, decreased from 1.1% of the world GDP in 2006 to -0.1% in 2015, is another important contributor to the shrink of global imbalances. On the other hand, the current account surplus of Europe surplus countries actually expanded from 2.8% of the world GDP in 2006 to 3.1% in 2015.

⁴ They differ only in three decimal places.

Table 1. Largest Current Account Deficit and Surplus Countries, 2006, 2013 and 2015

	200	6			201	3			2015		
Country	US\$ (bil- lions)	% of GDP	% of World GDP	I Country	US\$ (bil- lions)	% of GDP	% of World GDP	Country	US\$ (bill- ions)	% of GDP	% of World GDP
	Largest Deficit Countries										
USA	-807	-5.8	-1.58	USA	-366	-2.2	-0.48	USA	-463	-2.6	-0.63
Spain	-114	-9.0	-0.22	UK	-120	-4.4	-0.16	UK	-153	-5.4	-0.21
UK	-60	-2.2	-0.12	Brazil	-75	-3.0	-0.10	Brazil	-59	-3.3	-0.08
Australia	-45	-5.8	-0.09	Turkey	-64	-7.7	-0.08	Australia	-58	-4.7	-0.08
Greece	-31	-11.5	-0.06	Canada	-58	-3.2	-0.08	Saudi Arabia	-53	-8.3	-0.07
Turkey	-31	-5.9	-0.06	Australia	-51	-3.4	-0.07	Canada	-49	-3.2	-0.07
Italy	-30	-1.6	-0.06	India	-32	-1.7	-0.04	Mexico	-33	-2.9	-0.04
Portugal	-22	-10.7	-0.04	Mexico	-31	-2.5	-0.04	Turkey	-32	-4.5	-0.04
Poland	-14	-4.0	-0.03	Indonesia	-29	-3.2	-0.04	Algeria	-27	-16.5	-0.04
Romania	-13	-10.4	-0.03	France	-25	-0.9	-0.03	India	-22	-1.1	-0.03
Total	-1167		-2.28	Total	-850		-1.12	Total	-950		-1.29
				2. Larç	gest Sur	plus Co	untries				
China	232	8.4	0.45	Germany	253	6.7	0.33	China	331	3.0	0.45
Japan	175	4.0	0.34	China	148	1.5	0.20	Germany	284	8.4	0.39
Germany	171	5.7	0.33	Saudi Arabia	135	18.2	0.18	Japan	136	3.3	0.18
Saudi Arabia	99	26.3	0.19	Nether- Lands	85	9.8	0.11	Korea	106	7.7	0.14
Russia	92	8.7	0.18	Korea	81	6.2	0.11	Taiwan	76	14.6	0.10
Switzer- land	64	14.9	0.13	Switzer- land	76	11.1	0.10	Switzerland	76	11.4	0.10
Nether- lands	57	7.9	0.11	UAE	74	19.1	0.10	Russia	69	5.2	0.09
Norway	56	16.1	0.11	Kuwait	69	39.9	0.09	Nether lands	64	8.6	0.09
UAE	50	22.5	0.10	Qatar	60	29.9	80.0	Singapore	58	19.8	0.08
Kuwait	45	44.6	0.09	Singa- pore	54	17.9	0.07	Italy	40	2.2	0.05
Total	1041		2.03	Total	1037		1.37	Total	1240		1.69

Note: We select 2006, 2013 and 2015 as years of the largest global imbalances, the smallest global imbalances since 2006 and the most recent period. We list 10 largest current account deficit and surplus countries in each year. Some of the order of countries and exact values of current account balances for years 2006 and 2013 are different from those in Table 4.1 in IMF (2014) as the data were updated.

Source: World Economic Outlook Database.

Whether global imbalances will expand again in the future is an open question. IMF (2014)'s World Economic Outlook finds that global current account imbalances have significantly narrowed after the global financial crisis mainly as a result of demand depression in deficit countries and the faster recovery of emerging countries. The contraction of global imbalances is expected to last as long as the decrease in output due to diminished demand in deficit countries is matched by lowered potential output. However, if potential output is not permanently reduced, there still remains the risk that global imbalances will widen again. IMF (2016) also finds that global imbalances increased moderately in 2015 reflecting the uneven strength of recovery in advanced countries. Another concern is oil price; if it increases again, then it may lead to the expansion of the current account surpluses of oil exporting countries, worsening global imbalances.

Table 1 also indicates that Korea's current account surplus greatly contributes to global imbalances in recent years. Korea's current account surplus was 0.4% of GDP in 2006 and remained small until 2011 at 1.6% (not shown in the table). However, since then, it has continuously increased to 7.7% of GDP in 2015. While Korea did not appear in the list of the top 10 current account surplus countries in 2006, Korea's current account surplus accounts for 0.14% of the world GDP in 2015 making it the fourth largest surplus country, just after China (1st), Germany (2nd) and Japan (3rd). IMF (2016) also points out that Germany and Korea are two countries with excessively persistent current account surpluses that remain substantially stronger than fundamentals.

Korea's rapid increase in current account surplus in these years constitutes the background of high pressure on Korea by the US Department of Treasury. In 2015, the US legislators passed the Trade Facilitation and Trade Enforcement Act of 2015. The Act requires the US Department of Treasury to provide a report that evaluates measures of unfair currency practices of major trading partners. The first report was published in April, 2016 (US Department of Treasury, 2016a). Three criteria were adopted in determining unfair currency

practices – that is, whether a trade partner has (1) a significant bilateral trade surplus with the United States, (2) a material current account surplus, and (3) engaged in persistent one-sided intervention in the foreign exchange market. The report assesses that countries with a bilateral goods surplus of at least \$20 billion dollars -roughly 0.1% of U.S. GDP- are considered to meet the first criterion. For the second criterion to be met, a country needs to have a current account surplus in excess of 3% of its GDP. Lastly, a persistent and one-sided intervention is meant to be net purchases of foreign currency, conducted repeatedly, totaling in excess of 2 percent of its GDP over one year.

In the April 2016 report, the U.S. Department of Treasury selected five countries that conformed to two of the three criteria - China, Japan, Korea, Taiwan, and Germany. According to the report, China, Japan, Germany, and Korea satisfied the first two criteria and Taiwan, the last two criteria, but no country met all three. The U.S. Department of Treasury concluded that it would closely monitor and assess the economic trends and foreign exchange policies of these five countries. In the second report, disclosed in October, 2016 (US Department of Treasury, 2016b), the U.S. Department of Treasury included, in addition to the five countries above, one more country, Switzerland, to the monitoring list. In the new monitoring list, while China is considered to satisfy only the first criterion, Japan, Korea and Germany continue to satisfy the first two criteria, and Taiwan along with the newly entered country, Switzerland, meets the second two criteria.

The reports implicitly assume that the current account surpluses of these countries will be substantially reduced by changing the exchange rate. However, the current account surpluses of these countries cannot be explained by the exchange rate alone. This can be seen, for example, when looking at Korea's current account balances and the real effective exchange rate from 1980 to 2015 which is shown in Figure 2. The correlation between the two is clearly negative until 2007 (its value being -.80), implying that depreciation of the real effective exchange rate is in line with currency account surplus. However, it becomes

positive after the global financial crisis (its value being.67). After the global financial crisis, despite a rapid appreciation of the real effective exchange rate, Korea's current account surplus has been continuously increasing.

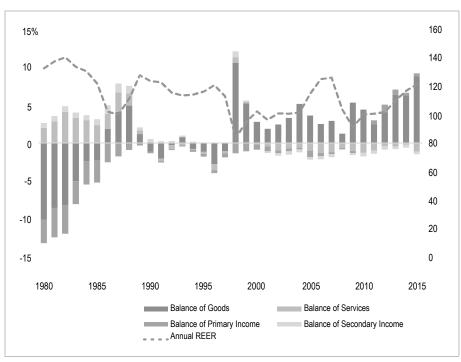


Figure 2. Korea's Current Account Balances and the real effective exchange rate

Note: The dotted red line, measured by the right axis, is the real effective exchange rate (REER). The current account balances as percentage of GDP, measured by the left axis, are divided into balances of goods, services, primary income and secondary income.

Source: Current account balance data are collected from the Bank of Korea; the real effective exchange rate is from the Bank for International Settlements.

Therefore, it is important to explain what other factors are responsible for large surplus of Korea's current account balance these years. In the next section we will explain the empirical methodology and the data used in our analyses.

3. Data and Methodology

The methodology we employ in this paper is the comparison of Korea's experience with those of other OECD countries. For this, we take the strategy of fitting a model for current account balance using an OECD panel data set that excludes Korea, and then predicting Korea's current account balance based on the fitted model and Korea's predictor variables.

Important predictors comprise population distribution, variables that measure economic structure, and those for business cycles. Population distribution enters the equation in a restricted way following Higgins (1998), who characterizes the demographic characteristics in terms of three quantities⁵. Specifically, let p_j be the fraction of the jth age group to the total population, for j=1,...,J. Note that $\sum_{j=1}^J p_j=1$ and thus using all the densities as explanatory variables cause perfect collinearity with the constant term, and thus a restriction should be imposed. When the effect of age distribution is modeled as $\sum_{j=1}^J \alpha_j p_j$, Higgins (1998) imposes a further restriction that the population coefficient, α_j , is a cubic function of j, i.e., $\alpha_j = \sum_{k=0}^3 \gamma_k j^k$, which implies that⁶

$$\sum_{j=1}^{J} \alpha_{j} p_{j} = \sum_{j=1}^{J} \left(\sum_{k=0}^{3} \gamma_{k} j^{k} \right) p_{j} = \sum_{k=0}^{3} \gamma_{k} \left(\sum_{j=1}^{J} j^{k} p_{j} \right) = \gamma_{0} + \sum_{k=1}^{3} \gamma_{k} \left(\sum_{j=1}^{J} j^{k} p_{j} \right).$$

$$(1)$$

The perfect collinearity issue remains even after these cubic restrictions are imposed. Higgins (1998) solves this issue by normalizing the population coefficients by

18 What Explains Current Account Surplus in Korea?

-

⁵ Higgins (1998)'s approach has been widely adopted to analyse the impact of demographical changes on current account balances in Korea. See, among others, Kwon (2014) and Shin et al. (2016).

⁶ For a more general approach of non-parametric estimation that does not impose any restrictions on population coefficients, see Park et al. (2010).

$$\sum_{j=1}^{J} \alpha_j = 0$$
, i.e., $\sum_{j=1}^{J} (\sum_{k=0}^{3} \gamma_k j^k) = 0$,

which implies that

$$\gamma_0 = -\sum_{k=1}^3 \gamma_k \frac{1}{I} \sum_{j=1}^J j^k.$$

Substituting this for (1) gives

$$\sum_{j=1}^{J} \alpha_j \, p_j = \sum_{k=1}^{3} \gamma_k \, D_k, \text{ where } D_k = \sum_{j=1}^{J} j^k \, p_j - \frac{1}{I} \sum_{k=1}^{3} j^k. \tag{2}$$

This way, the population distribution is characterized by the three quantities D_1 , D_2 and D_3 .⁷ See Higgins (1998) for more details on this restricted specification.

We follow Chinn and Prasad (2003) in employing other possible predictors that include GDP gaps (ratio to GDP), GDP level (relative to the USA), growth, crude oil price interacted with fuel imports (ratio to GDP), trade openness (trade volume as percentage of GDP), net foreign assets (ratio to GDP), and government budget surplus (cash surplus/deficit as a percentage of GDP).⁸ We also consider real effective exchange rates though it is more likely to be endogenously determined together with the dependent variable. The explained and explanatory variables are obtained from various sources. Table 2 summarizes the data sources. The final data set consists of 34 OECD countries for the period 1980-2015.

Alternatively, one can describe the demographic characteristics by youth and old dependency ratios. However, this approach imposes even more restrictive assumptions that population distribution affects current account balances only through youth and old dependency ratios.

⁸ Chinn and Prasad (2003) also considered financial deepening (money to GDP ratio), and volatility of terms of trade index. But they are not used in our analyses due to the limitation of data availability.

Table 2. Source of data

Data Source	Variables
World Develop- ment Indicators	Current account balance (% of GDP), fuel imports and exports (% of merchandise imports and exports), merchandise imports and exports (current US\$), GDP (current US\$, LCU), broad money (% of GDP), net foreign asset (current LCU), real growth rate, cash surplus/deficit
United Nations	Population
Penn World Table	PPP-adjusted GDP
Global Economic Monitor	Crude oil price
Bank for Interna- tional Settlement	Real effective exchange rates
IMF's Direction of Trade Statistics	Bilateral exports and imports
Korean Labor and Income Panel Study	Average propensity to consume by age group
Statistics Korea	Future age distribution up to 2060

It is not easy to set up a model that is not subject to potential problems. Hence we consider as many cases as possible including the following three basic models:

Model 1: The first model explains current account to GDP ratio (CA) only by the age distribution measured by D1, D2 and D3. The purpose of fitting this model is to examine how much demographical changes can explain the evolution of CA in Korea as well as other OECD countries. As shown in the next section, experiences in other OECD countries summarized by fixed effects regression predicts the long-run trend of Korea's CA quite well. Demographic changes, however, do not provide information on the cross-country differences in the levels of CA – i.e. different age distributions across countries hardly remove the fixed effects in the estimation.

Model 2: A more detailed model is considered, which includes economic variables such as business cycles (GDP gap ratios, percentage of GDP), crude oil price (interacted with fuel imports to GDP ratio), trade openness (percent-

age of GDP), real GDP growth (percentage), net foreign assets (percentage of GDP), government budget surplus (percentage of GDP), and relative income level (to the USA), as well as age distribution (D1-D3). For business cycles considerations, we include the country's GDP gap ratio and the trading partners' average GDP gap ratio weighted by exports volumes, where GDP gaps are measured by the cyclical deviations from its trend obtained by the HP filter.⁹ The purpose of considering this detailed model is to examine the effects of various economic conditions together with demographic changes.

Model 3: We examine Model 1 again with policy variable(s) – a model with either the real effective exchange rate (Model 3a), or government budget surplus (Model 3b) or both (Model 3c). By fitting the model with the real effective exchange rate (Model 3a), for example, we aim to estimate the total effect of the exchange rate on CA – that includes the indirect effects of exchange rate through other control variables – in search of evidence on how much an exchange rate market intervention, if it exists, influences current account balance to the greatest degree. In the same manner, we also expect to estimate the total effect of government fiscal policy on current account surplus by adding government budget surplus as an additional explanatory variable (Model 3b). We are interested in total effects, rather than partial effects that assume other control variables in Model 2 to be fixed. In Model 3, by controlling for the age distribution only (while suppressing other economic variables), we allow for the possibilities that those covariates also change as the exchange rate is adjusted.¹⁰

The three basic models are summarized in Table 3. We estimate each model by fixed-effects panel regression. The fixed-effects estimation method allows for arbitrary differences in the levels of the dependent variable and the predictor variables. Thus, it detects the patterns that are found in the variation of the

9 GDP data are obtained from real GDP indexes constructed from WDI's real GDP growth rates.

The 2016 External Sector Report claims that Korea's real effective exchange rate in 2015 was 4 to 12 percent undervalued than the level consistent with fundamentals. We will examine how much CA difference can there be by a 12 percent devaluation.

variables over time within each of the sample countries, while, by contrast, the pooled OLS estimator finds a weighted average of the functional relationships that are evident across countries within each of the periods. The fact that the models are fitted by the fixed-effects method means that Korea's change over time is compared to the benchmark behavior of other OECD countries' changes over time. Technically, it means that fixed effects are controlled for.

Table 3. The three basic models

Dependent variable: CA (current account balance to GDP, percent)

	, , , , , , , , , , , , , , , , , , , ,
Model	Explanatory variables
1	Age distribution (D1, D2, D3)
2	Age distribution (D1, D2, D3), GDP gap ratio, trade partners' average GDP gap ratio, crude oil price, fuel exports (% of GDP), fuel imports (% of GDP), relative GDP (PPP, USA=1), real growth rate, openness, net foreign asset (ratio to GDP), government budget surplus (% of GDP)
3	Age distribution (D1, D2, D3), real effective exchange rate, cash surplus/deficit

Another important feature of this paper is that Korean data are excluded from the analysis when fitting the models. The purpose of this is to prevent the model from being over-fitted in favor of Korean data. We estimate the rule of how CA is related to predictors (such as demographic changes) in other OECD countries, and then apply the same rule to Korean data to see if it applies to Korea well. This method is common in the prediction literature (see James, Witten, Hastie, and Tibshirani, 2015, for an introduction), and can address the potential problem that demographic changes over-explain Korea's current account surplus. In this way, we also implicitly assume that the parameters governing the behavior of other OECD countries are the same as those of Korea. In other words, we try to explain Korea's current account surplus as much as possible solely based on the experiences of other OECD countries without introducing any behavior unique to Korea. In the next section, we will present estimation results and the implications for Korea's CA.

4. Decomposition of Korea's Current Account Surplus

The fixed-effects regression results for Models 1-3 are presented in Table 4. Results for Model 1 suggest the following relationship between current account balance (ratio to GDP) and the age distribution:

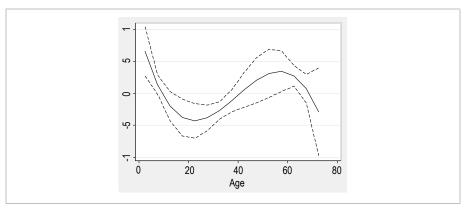
CA = fixed effects
$$-0.851^{***}D_1 + 0.121^{**}D_2 - 0.0048^{**}D_3$$
,
(0.296) (0.048) (0.0021) (3)

where the numbers in the parentheses are cluster-robust standard errors, and the triple and double asterisks stand for statistical significance at the 1% and 5% levels, respectively. From these estimates, we can recover the estimates of α_j using the formula $\alpha_j = \sum_{k=0}^3 \gamma_k j^k$ with γ_0 chosen such that the sum of the α_j estimates is zero. The resulting estimates are presented in Figure 3. Not surprisingly, CA is higher when the fraction of the working age group is higher, but lower when the economy has a higher population of young and old people.¹¹

Table 4. Fixed effects regression results for the three basic models

Dependent variable: Current Account	Model 1	Model 2	Model 3a	Model 3b	Model 3c
D1	-0.851***	-0.837***	-0.759**	-0.894***	-0.852***
	(0.296)	(0.116)	(0.325)	(0.265)	(0.267)
D2	0.121**	0.116***	0.113**	0.128***	0.122**
	(0.048)	(0.031)	(0.053)	(0.044)	(0.047)
D3	-0.0048**	-0.0045***	-0.0046*	-0.0051**	-0.0049**
	(0.0021)	(0.0015)	(0.0023)	(0.0020)	(0.0021)
GDP gap ratio (% of GDP)		-0.781*** (0.189)			

¹¹ This particular cubic form of population coefficients in estimating current account balances is also found in Kwon (2014) and Shin et al. (2016).


Table 4. Continued

Trading partner's GDP gap ratio (weighted by ex- ports)		0.195 (0.192)			
log(crude oil price, Dubai)		-1.699* (0.851)			
Fuel exports (% of GDP)		1.298*** (0.387)			
Fuel imports (% of GDP)		-0.577 (0.913)			
log(Dubai)*Fuel exports		-0.078 (0.091)			
log(Dubai)*Fuel imports		0.067 (0.201)			
log(Relative Income, USA=100)		0.799 (3.679)			
Real growth rate		0.016 (0.084)			
Openness (trade to GDP ratio, %)		0.052* (0.026)			
Net foreign asset (% of GDP)		4.956*** (1.391)			
Budget surplus (% of GDP)		0.134** (0.062)		0.189** (0.085)	0.181 (0.107)
log(real effective exchange rate)			-8.095** (3.000)		-8.347** (3.462)
Intercept	2.579* (1.347)	-0.544 (15.24)	40.33*** (13.95)	3.114** (1.392)	42.13** (16.06)
Total observations	974	803	674	853	586
Number of countries	33	33	22	33	22
Average T	29.5	24.3	27.2	25.8	26.6
R-squared within	0.1041	0.3469	0.1790	0.1260	0.2250

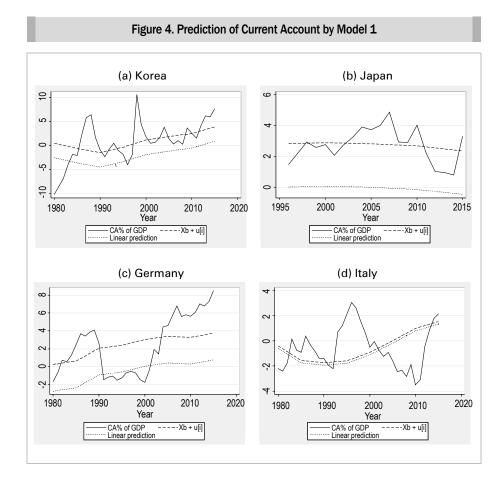
Note: Cluster-robust standard errors are presented in parentheses. ***, ** and * denote statistical significance at the 1%, 5% and 10% levels, respectively. Korea's data are not used for estimation.

Source: Authors' calculation

Figure 3. Population coefficients in Model 1

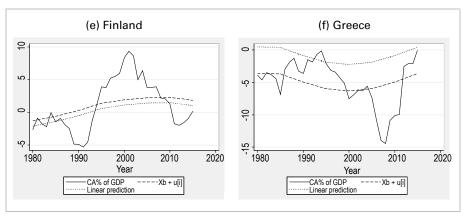
Note: The solid line stands for a cubic from of the population coefficients estimated from Model 1 and the dashed lines, the 95% confidence band.

Source: Authors' calculation


The results in (3) can be used to predict Korea's CA using forecasts of Korea's demographic changes. Figure 4(a) exhibits Korea's actual CA, the trend of the prediction (labeled as "Linear prediction") by

$$2.579 - 0.851 \times D_1 + 0.121 \times D_2 - 0.0048 \times D_3$$

and its adjustment by an estimated fixed effect (labeled as "Xb + u[i]"). The "linear prediction" rather understates the actual CA overall, but it traces the recent upward trend well. This is a natural phenomenon because the fixed-effects regression fits over-time variation while leaving out the level difference across countries. To visualize better how the predictor performs in Korea, Figure 4(a) also displays the CA prediction adjusted by a fixed effect. Note that the model is fitted by a fixed-effects method using data for 33 OECD countries excluding Korea. Because the fixed effect for Korea is not estimated, we calculated it by comparing the actual CA and the prediction averaged over the sample period so that the fixed-effects-adjusted predictor passes through the middle of the actual trend. In the graph, the estimated fixed effect calculated in this way is 3.0. We have also tried pooled OLS, random-effects, and between-group

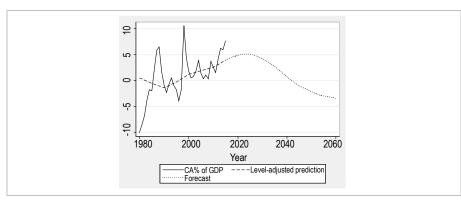

regressions, but the fixed effect is not fully explained by any regression, which means that there are some factors in Korea other than demographic factors that make its CA high on average.

Predictions are also drawn for five of the most aged countries such as Japan, Germany, Italy, Finland and Greece in Figure 4 using the same regression results. Performance may be viewed controversial depending on how long-run is defined, but considering that the model was fitted using OECD data excluding Korea's, the prediction of the long-run pattern of Korea's CA seems surprisingly accurate.

26 What Explains Current Account Surplus in Korea?

Figure 4. Continued

Note: The solid and dotted lines illustrate actual and its predictive current accounts from Model 1 and the dashed line is derived by adding an estimated country fixed effect.


Source: Authors' calculation.

Forecasts of future age distribution up to 2060 is provided by Statistics Korea. We have constructed the D1-D3 variables by using these forecasts and constructed an outlook of future CA. The results are presented in Figure 5. It is forecasted that Korea's demographic changes cause its CA to increase until 2024 and then fall continuously until CA turns negative in 2042 if Korea follows the experience of the rest of the OECD countries¹².

Getting back to the prediction of CA until 2015, although Korea's long-run trend is well predicted, the recent large increase in surplus is not fully explained by demographic changes. Table 5 contains the actual CA, the prediction by Model 1 (the linear prediction and the fixed effect), and the unexplained part (the residuals). CA amounts to a total of 7.7 percentage points in 2015 and while the model and the fixed effect explains 3.9 percentage points, 3.7 percentage points are left unexplained.

¹² Kwon (2014) also points out that Korea' current account surplus is expected to increase until 2020s and then decrease as demographical changes start to act adversely.

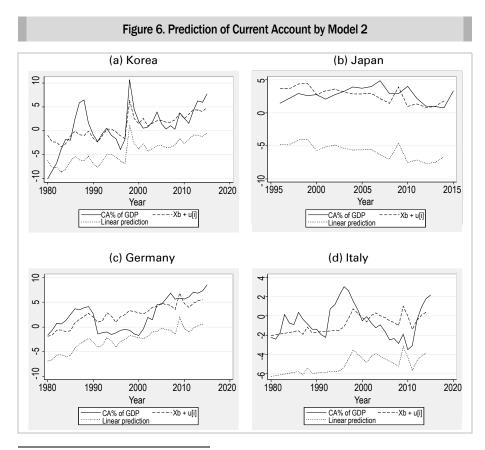
Figure 5. Future trend forecast of Korea's current account by demographic changes (Model 1)

Note: The solid line stands for Korea's actual current account balances from 1980 to 2015 and the dashed line is their future trend forecast from Model 1 based on forecasts of future age distribution up to 2060 provided by Statistics Korea.

Source: Authors' calculation.

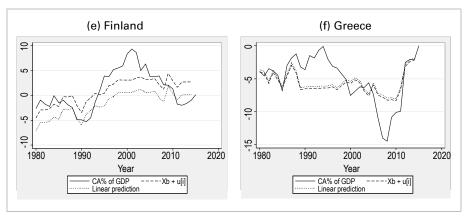
Table 5. Trend in Korea's current account and its prediction by Models 1 and 2

ear	CA	Mod	del 1	Model 2		
Gai	CA	Prediction	Residual	Prediction	Residual	
2011	1.6	2.8	-1.3	3.5	-1.9	
2012	4.2	3.1	1.0	4.4	-0.2	
2013	6.2	3.4	2.8	4.3	1.9	
2014	6.0	3.7	2.3	4.0	2.0	
2015	7.7	3.9	3.7	4.8	2.9	


Note: "Prediction" columns include Korea's fixed effect, which is calculated so that the average over 1980-2015 is the same for the actual and the predicted. The discrepancy between the actual CA and the sum of "Prediction" and "Residual" is due to rounding.

Source: Authors' calculation.

We next examine the possibility of explaining this recent behavior by Model 2. The fixed-effects regression results are presented in the "Model 2" column of Table 4. The coefficients on D1, D2 and D3 are similar to those of Model 1. The country's own GDP gap ratio is strongly negatively correlated with CA holding other regressors fixed. Trading partners' GDP gap ratio has a positive correlation with CA but is statistically insignificant. Within a country, more


open years are associated with higher CA, though the effect is small. Net foreign assets (percentage of GDP) shows a significant positive association, so does government budget surplus.¹³

The CA trend predicted using the predictors in Model 2 is presented in Figure 6 (a) for Korea. The long-run trend of Korea's CA is again well predicted by the functional relationship found from other OECD countries as shown in Figure 6 (a). The rest of the panels of Figure 6 present the prediction for the five most aged countries, which are Japan, Germany, Italy, Finland and Greece. We observe reasonable predicting power for all countries except for Greece.

¹³ A meaningfully different result is obtained when a lagged dependent variable is included on the right-hand side. But a lagged dependent variable already contains fixed effects, and it is natural that fixed effects are well predicted by past dependent variables.

Figure 6. Continued

Note: The solid and dotted lines illustrate each country's actual and predictive current accounts from Model 2 and the dashed line is prediction derived by adding an estimated country fixed effect.

Source: Authors' calculation.

For Model 2, Korea's fixed effect is a large 5.3 percentage point, which remains unexplained by the explanatory variables in Model 2. We tried fitting (using random effects regression) various models including variables such as short-term interest rate difference (based on money market rates), financial deepening, etc., but could not obtain significantly different results.

The predicted CA by Model 2 is presented in Column "Model 2" of Table 5. More is explained by the model (4.8 points of the 7.7 points). ¹⁴ Table 6 decomposes the changes in Korea's CA into the contributions of demographic changes and economic factors. In 2015, of the 7.5 percentage point deviation of Korea's CA from its average during 1980-2010, 2.8 percentage points are explained by demographic factors, and 1.7 percentage points by economic factors. This again shows that the upward trend is mostly explained by demographical changes. However, the remaining 3.0 percentage points remain unexplained.

No data are available for Korea's relative income and fuel exports/imports in 2015. We assumed that they remain the same as 2014.

Table 6. Decomposition of Korea's current account change in comparison to 1980-2010 average

			Prediction			
Year	CA	Change from 1980- 2010 av- erage (A)	(change from 1980- 2010 aver- age, B)	Demographic factors	Other economic factors	Residual (A – B)
2011	1.6	1.4	3.2	1.7	1.5	-1.8
2012	4.2	4.0	4.1	2.0	2.1	-0.1
2013	6.2	6.1	4.0	2.2	1.8	2.0
2014	6.0	5.8	3.7	2.5	1.2	2.1
2015	7.7	7.5	4.5	2.8	1.7	3.0

Note: Numbers may not add up due to rounding.

Source: Authors' calculation.

The comparison of Model 2's estimation results (Figure 6) with those of Model 1 (Figure 4) generally indicates that other control variables introduced in Model 2 are only helpful in explaining short run fluctuations without much improvement in explaining neither the trend nor the fixed effects. Especially the recent increase in Korea's CA seems not fully explained even by the factors considered in Model 2, which means that the recent changes are unique to Korea.

A feature of Korea that is not captured in the models, but is worth considering is the fall in consumption propensity. For example, Figure 7 shows a decline in the average propensity to consume (APC) for different age groups from 2011 to 2013. In all age groups, the APC fell, with sharper declines in older age groups. The resulting higher saving rate seemed to have led to the recent higher CA, not explained by the model.

Figure 7 shows the possibility that the population coefficients may vary as time passes. In particular, as aging progresses, the same age group may change their behavior. For example, as the old dependency ratio increases, the burden of the young generation increases, causing changes in their saving behavior. In

order to empirically examine this possibility, we now allow the coefficients of D1-D3 to change as the economy ages by introducing interaction terms between D1-D3 and the old dependency ratio.

Figure 7. Average propensity to consume by age group in Korea in 2011 and 2013

Source: Authors' calculation based on The Survey of Household Finances and Living Conditions.

The regression results for the models with modified regressor sets are presented in Table 7. The fitted line from the modified Model 2 along with the actual CA is illustrated in Figure 8. The recent increases (at least from 2014 to 2015) of Korea's CA are better explained by this modification as Figure 8 suggests. Specifically, an additional 0.6 percentage point is explained by the modified model. However significant portion of the recent increase in CA remains unexplained. It may be possible to identify other factors that would explain recent behavioral changes in Korea. Candidates would include variables related with social security, country risks, household debts, credit risks, etc. But accounting for the recent changes based on the experiences of other countries seems hard, if not impossible, because identifying and observing the relevant factors for other countries to explain this changing saving behavior will be challenging. This important issue is left for future research.

Table 7. Fixed effects regression results for modified models

Dependent variable: CA	Model 1	Model 2
D1	-0.638** (0.281)	-0.759*** (0.230)
D2	0.0792 (0.0500)	0.0823* (0.0427)
D3	-0.0027 (0.0024)	-0.0023 (0.0021)
Old dependency ratio	0.136 (0.494)	-0.392 (0.462)
D1*(Old dependency ratio)	-0.103** (0.044)	-0.038 (0.044)
D2*(Old dependency ratio)	0.0146** (0.0069)	0.0044 (0.0065)
D3*(Old dependency ratio)	-0.00058* (0.00029)	-0.00015 (0.00027)
GDP gap ratio (% of GDP)		-0.800*** (0.167)
Trading partner's GDP gap ratio (weighted by exports)		0.304 (0.196)
log(crude oil price, Dubai)		-2.231** (0.934)
Fuel exports (% of GDP)		1.436*** (0.405)
Fuel imports (% of GDP)		-0.405 (0.895)
log(Dubai)*Fuel exports		-0.126 (0.089)
log(Dubai)*Fuel imports		0.032 (0.202)
log(Relative Income, USA=100)		1.566 (3.663)
Real growth rate		0.016 (0.075)
Openness (trade to GDP ratio, %)		0.053** (0.023)
Net foreign asset (% of GDP)		4.350*** (1.350)

Table 7. Continued

Budget surplus (% of GDP)		0.134** (0.060)
Intercept	2.261 (1.733)	-0.806 (15.48)
Total observations	974	803
Number of countries	33	33
Average T	29.5	24.3
R-squared within	0.1441	0.3672

Note: "Old dependency ratio" is the deviation of the old dependency ratio from its value (18.0 percentage points) for Korea in Year 2015. Cluster-robust standard errors are presented in parentheses. ***, ** and * denote statistical significance at the 1%, 5% and 10% levels, respectively. Korea's data are not used for estimation.

Source: Authors' calculation.

Figure 8. Prediction of CA by modified Model 2 9 2 က -19 5 1980 1990 2000 2010 2020 Year CA% of GDP ----Xb + u[i] Linear prediction

Note: In the modified specification, the coefficients on D1-D3 depend on old dependency ratio. The solid and dotted lines illustrate Korea's actual and predictive current accounts from Model 2 and the dashed line is prediction derived by adding an estimated country fixed effect.

Source: Authors' calculation.

5. Policy Implications

Korea's current level of current account surplus is quite large. Political pressures to appreciate the Korean won may escalate in the near future. IMF (2016) also recommends that, as a measure of correcting global imbalances, surplus countries that have enough fiscal space such as Korea, need to play a greater role by expanding fiscal expenditures. In this section we assess how much Korea's current account surplus can be reduced by adjusting the exchange rate and/or fiscal policies.

To partially address these issues, we fit Model 3. The results are presented in the last three columns of Table 4. The coefficients on the real effective exchange rate in logarithm suggest that a 10% currency appreciation is associated with a decline in CA surplus by around 0.8 percentage points. This association is statistically significant at the 5% significance level, but the magnitude is not large enough to reduce Korea's large CA surplus in recent years.

Government budget surplus is also associated with CA surplus with statistical significance. An extra 10 percentage point budget surplus (as a ratio to GDP) is associated with, approximately, an additional 2 percentage point CA surplus. Considering that the standard deviation of Korea's budget surplus is less than 2 (percentage points) in the period of 1970-2015, it is not likely that policy changes in budget surplus can lead to practically important changes in CA.

Overall, this section confirms that Korea's current account surplus cannot be reduced by adjusting the exchange rate and/or fiscal policies alone. On the other hand, a substantial portion of the current account surplus Korea is experiencing is due to the demographical changes, which will eventually act to reduce the surplus in the future. In other words, the current level of large current account surplus is primarily due to the savings of a large working population for the sake of their own future, which will naturally decline as Korea's population ages.

One important characteristic of real exchange rates is that they are endoge-

nously determined together with CA. Thus, the fixed-effects estimator for Model 3 may suffer from endogeneity biases. As for the exchange rates, the direction of its causal effect on CA is negative, while the direction of the reverse causality is positive (an exchange rate rises when CA increases). We may thus rationally guess that the estimates on the exchange rate in Table 4 understate the true causal relationships. The case is different for budget surplus. The direction of its endogeneity bias seems to be the opposite. The reason budget surplus is endogenous is that governments facing a large CA surplus may be willing to reduce expenditure, which in turn will cause the surplus to increase. As the causal effect of budget surplus itself is positive, the endogeneity will reinforce the positive correlation between budget surplus and CA, and the estimates in Table 4 may overstate the causal effect. Thus, the true causal effect of budget surplus should be smaller than the one reported in Table 4.

In order to address this endogeneity issue and estimate the causal effect, we estimate a dynamic equation that includes a lagged CA and lagged explanatory variables together with D1-D3 on the right-hand side where, importantly, real exchange rate is specified to be contemporaneously endogenous. Technically, let y and X denote the explained and explanatory variables, respectively, where X contains D1-D3 and the log real effective exchange rate. The dynamic model is

$$y_{it} = \alpha_i + X_{it}\beta + \rho y_{it-1} + X_{it-1}\delta + u_{it}, \tag{4}$$

where β measures the expected effect of a change in X (by one unit) on y while holding y_{it-1} and X_{it-1} fixed. Here, some variables in X_{it} are allowed to be arbitrarily correlated with u_{it} contemporaneously, but past values are predetermined at a given time. Among the components of X, D1-D3 and their lagged variables are exogenous, while exchange rate and budget surplus are contemporaneously endogenous, and their lags are predetermined. Model (4) is best understood by rewriting it as

$$y_{it} = a_i + X_{it}\beta + u_{it} + \sum_{j=1}^{\infty} \rho^j (X_{it-j}\gamma + u_{it-j}),$$
 (5)

where $a_i = \alpha_i/(1-\rho)$. Model (5) is interpreted as follows. The $X_{it}\beta$ term represents the contemporaneous effect of a change in the explanatory variable, and u_{it} comprises innovations due to other factors. The last term on the right-hand side of (5) signifies that past shocks in X and u have persistent influences on y. For example, shocks in exchange rates not only affect contemporaneous CA but can change economic agents' behaviors in a more persistent way. The ρ parameter summarizes the degrees of this persistency. In (5), the immediate contemporaneous effect is measured by β and the aggregate persistent effect by $\sum_{j=1} \rho^j \gamma = \rho(1-\rho)^{-1} \gamma$. Algebra shows that $\delta = (\gamma - \beta)\rho$, which implies that the aggregate indirect effect (excluding the contemporaneous effect) is $(1-\rho)^{-1}(\delta+\beta\rho)$. The total long-run effect is $\beta + (1-\rho)^{-1}(\delta+\beta\rho) = (1-\rho)^{-1}(\delta+\beta)$.

The dynamic model (4) is estimated using the System GMM (Arellano and Bover, 1995; Blundell and Bond, 1998) for three different specifications of Model 3. The results for Model 3a in Table 8 reveals that the contemporaneous effect (estimate = -7.281) of a change in the real effective exchange rate is slightly smaller than what is implied by Table 4. But there is an additional indirect effect which amounts to (5.441-7.281*0.861)/(1-0.861) = -5.956 in aggregation due to persistency. Thus, for every permanent 10% depreciation, CA improves by 1.3 percentage points in total, which is 1.6 times larger than what the fixed effects estimation results (0.8 percentage point) in Table 4 imply. This is still too small to explain Korea's large CA surplus. Model 3c that includes government budget surplus as an additional explanatory variable suggests even smaller effects of the real effective exchange rate. The contemporaneous effect is measured as -6.641 in contrast to -7.281 of Model 3a, and the aggregate persistency effect is (5.383-6.641*0.863)/(1-0.863) = -2.541.

Table 8. System GMM estimation of dynamic panel data models

Dependent variable: CA	Model 3a	Model 3b	Model 3c	
Lagged CA	0.861*** (0.026)	0.794*** (0.023)	0.863*** (0.030)	
D1	-0.821** (0.408)	-0.920 (0.567)	-0.660 (0.531)	
D2	0.193*** (0.070)	0.151 (0.101)	0.154** (0.075)	
D3	-0.0089*** (0.0034)	-0.0064 (0.0046)	-0.0074** (0.0031)	
Lagged D1	0.593 (0.400)	0.673 (0.564)	0.409 (0.576)	
Lagged D2	-0.163* (0.063)	-0.118 (0.096)	-0.121 (0.077)	
Lagged D3	0.0079* (0.0030)	0.0052 (0.0042)	0.0063** (0.0030)	
log(real effective exchange rate)	-7.281*** (1.402)		-6.641*** (1.679)	
Lagged log(real ef- fective exchange rate)	5.441*** (1.495)		5.383*** (1.948)	
Budget surplus		0.066 (0.075)	0.022 (0.086)	
Lagged budget sur- plus		-0.125** (0.058)	-0.047 (0.057)	
Total observations	666	828	570	
Number of countries	22	33	22	
Average T	30.3	25.1	25.9	
Arellano-Bond AR(1)	-3.51 (p = .0005)	-3.01 (p = .0026)	-3.39 (p = .0007)	
Arellano-Bond AR(2)	-1.59 (p = .1111)	-2.00 (p = .0458)	-1.66 (p = .0964)	

Note: The models are estimated by the one-step efficient System GMM using Stata's xtdpdsys command. Robust clustered standard errors are reported in parentheses. Log(exchange rate) and Surplus are specified as endogenous, and their lags as predetermined. The demographic variables (D1-D3 and their lags) are specified exogenous.

Source: Authors' calculation.

The contemporaneous effect of government budget surplus is statistically insignificant and its size is practically negligible. According to the results for Model 3b in Table 8, a 10%-point budget deficit (ratio to GDP) is associated

with a 0.0066%-point fall in CA, which is insignificant both statistically and practically. The results for Model 3c imply even smaller effects. However, it concerns us that the Arellano-Bond serial correlation test for order 2 rejects the null hypothesis for Model 3b.¹⁵

-

In order to resolve this issue, we fit an AR(2) model $y_{it} = X_{it}\beta_0 + X_{it-1}\beta_1 + X_{it-2}\beta_2 + \rho_1 y_{it-1} + \rho_2 y_{it-2} + u_{it}$. The estimated coefficient of the budget surplus is 0.0715 (standard error = 0.0742), which is again insignificant both statistically and practically, and its two lags have coefficients -0.110 (se = 0.096) and 0.026 (se = 0.065), respectively, while the coefficients on the two lagged dependent variables are 0.825 (se = 0.0465) and -0.044 (se = 0.0553), respectively. The Arellano-Bond serial correlation tests for the AR(2) model indicates that it is a correct specification (the p-value for order 1 is 0.0013, that for order 2 is 0.1911).

6. Conclusion

Korea experienced a currency crisis in 1998. Since then it has experienced continuous current account surpluses. The current account surpluses just after the crisis were extremely helpful for the economy to recover from the crisis. Managing a modest level of current account surpluses has also been beneficial for the economy in preventing future crises. However, Korea's current account surplus in 2015 amounted to 7.7% of GDP, causing a concern that it may be too excessive. This exorbitant reliance on external demand can escalate political pressures from trading partners to appreciate the exchange rate. It is also argued that maintaining more balanced demand sources by giving domestic demand a greater role is essential for a sustained growth path.

In this paper, we investigated underlying reasons as to why Korea's current account surpluses are widening. We found that the upward trend in Korea's current account surpluses is essentially explained by demographical changes it is currently experiencing. Moreover, we show that since Korea's population is rapidly aging, its current account surplus is expected to disappear by 2042 as it becomes one of the most aged economies in the world. In fact, demographical changes are so powerful that they explain quite successfully the trend of current account balances of other aged economies such as Japan, Germany, Italy, Finland and Greece as well. However, demographics do not explain crosscountry differences in the level of current account balances, i.e. the high level of Korea's current account surpluses is mainly explained by a country fixed effect.

When we add the real exchange rate as an additional explanatory variable, it is statistically significant with the right sign, but the magnitude explained by it is quite limited. For example, in order to reduce current account surplus by 1 percentage point, a whopping 12% depreciation is needed. Since other economic variables are yet included as explanatory variables, this can be considered to be the maximum estimate of the effect of the exchange rate changes. If it is true

that Korea's current exchange rate is 4 to 12 percent undervalued than the level consistent with fundamentals, it is impossible to reduce Korea's current account surplus to a reasonable level by adjusting the exchange rate alone. Another possibility to reduce current account surplus is expanding fiscal policies. We find, however, that the impact of fiscal adjustments on current account surplus is even more limited. According to our estimates, reducing current account surplus by 1 percentage point requires a 5-6 percentage points increase in budget deficits (as a ratio to GDP).

The above impacts of exchange rate and fiscal policy adjustments are estimated without considering the endogeneity of these policy variables. If we allow endogenous movements of these variables, the impact of exchange rate adjustment is 1.6 times larger, while that of fiscal policy decreases so that it is no longer statistically significant.

When we add other economically fundamental variables such as GDP gap, oil prices, net foreign asset and so on, they contribute to explaining short run fluctuations without much improvement in explaining the trend nor country fixed effects. On the other hand, while the upward trend in Korea's current account surplus since 1997 is mainly explained by demographical changes, the current level of current account surplus, i.e. 7.7% of GDP, is placed quite above the fitted line derived by the economically fundamental variables including demographical changes.

This idiosyncrasy of Korea's current account surplus seems to be related to the increased saving propensity of households especially among aged people. The current older generation are in a special situation in the sense that they suddenly realize that their increased life span may not be appropriately supported by any means. In the past, old people had relied on informal subsidies from their own children, which, as individualism became more prevalent, is no longer expected as much as before. The current pension scheme started as a fully funded system and the older population are not beneficiaries of the pension. Hence, they have to rely on themselves, needing to save for their own future. As

people entitled to the pension grow older, this problem will disappear with the saving rate also expected to decrease again and the idiosyncratic current account surplus will be reduced. This is just one conjecture, however, and we will need further detailed analyses for more rigorous evidence to support this argument.

References

- Arellano, M., and O. Bover. 1995. "Another look at the instrumental variable estimation of error-components models." *Journal of Econometrics*, Vol. 68, 29–51.
- Blundell, R., and S. Bond. 1998. "Initial Conditions and Moment Restrictions in Dynamic Panel Data Models." *Journal of Econometrics*, Vol. 87, 115–143.
- Blanchard, Olivier and Gian Maria Milesi-Ferretti. 2011. "(Why) Should Current Account Balances Be Reduced?" IMF Staff Discussion Note 11-03.
- Chinn, Menzie and Eswar Prasad. 2003. "Medium-term Determinants of Current Accounts in Industrial and Developing Countries: An Empirical Exploration." *Journal of International Economics*, 59, 47–76.
- Higgins, Matthew. 1998. "Demography, National Savings, and International Capital Flows." *International Economic Review*, Vol. 39, No. 2, 343–369.
- IMF. 2014. "Are global imbalances at a turning point?" Chapter 4 in *World Economic Outlook*. International Monetary Fund.
- IMF. 2016. "2016 External Sector Report." International Monetary Fund. (July)
- James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2015. *An Introduction to Statistical Learning*. Springer. New York.
- Kwon, Kyuho. 2014. "Saving, Investment and Current Account: The Impact of Demographical Changes." *Dynamism of Korea's Economy*, edited by Dongchul, Cho. Korea Development Institute. (in Korean)
- Lee, Hyunhoon and Kwnaho Shin. 2016. "Population Aging and Economic Growth: Are Advanced Countries Different?" Mimeo.

- Park, Joon Y., Kwanho Shin and Yoon-Jae Whang. 2010. "A Semiparametric Cointegrating Regression: Investigating the Effects of Age Distributions on Consumption and Saving." *Journal of Econometrics*, Volume 157, Issue 1, 165-178.
- Phillips, Steven, Luis Catao, Luca Ricci, Rudolfs Bems, Mitali Das, Julian Di Giovanni, D. Filiz Unsal, Marola Castillo, Jungjin Lee, Jair Rodriguez and Mauricio Vargas. 2013. "The External Balance Assessment (EBA) Methodology." International Monetary Fund Working Paper 13-272.
- Shin, Kwanho, Chirok Han and Cheolbeom Park. 2016. "The Impact of Demographical Changes on Aggregate Demand." Report submitted to the Ministry of Strategy and Finance. (in Korean)
- US Department of Treasury. 2016a. "Foreign Exchange Policies of Major Trading Partners of the United States." U.S. Department of the Treasury Office of International Affairs. (April)
- US Department of Treasury. 2016b. "Foreign Exchange Policies of Major Trading Partners of the United States." U.S. Department of the Treasury Office of International Affairs. (October)

KIEP List of KIEP Working Papers (2014-2016. 12)

■2016	16-15	What Explains Current Account Surplus in Korea? Han Chirok and Shin Kwanho
	16-14	Trade in Intermediate Goods: Implications for Productivity and Welfare in Korea PYO Hak K. and KIM Young gui
	16-13	Economic Effects of Anti-Dumping Duties: Protectionist Measures or Trade Remedies? CHOI Nakgyoon
	16-12	China's Development Finance to Asia: Characteristics and Implications OH Yoon Ah
	16-11	A New Measure of Inter-industry Distance and Its Application to the U.S. Regional Growth YOON Yeo Joon and WHANG Un Jung
	16-10	Government Spending Policy Uncertainty and Economic Activity: U.S. Time Series Evidence KIM Wongi
	16-09	Comparative Advantage of Value Added in Exports: The Role of Offshoring and Transaction Costs CHOI Nakgyoon and PARK Soonchan
	16-08	The Effect of Exchange Rate Volatility on Productivity of Korean Manufacturing Plants: Market Average Exchange Rate Regime vs. Free Floating CHOI Bo-Young and PYUN Ju Hyun
	16-07	To Whom does Outward FDI Give Jobs? KANG Youngho and WHANG Unjung
	16-06	Labor Market Flexibility and FDI: Evidence From OECD Countries CHOI Hyelin

	16-05	International Transmission of U.S.Monetary Policy Suprises KIM Kyunghun, and KANG Eunjung
	16-04	The Impact of Chinese Economic Structural Changes on Korea's Export to China SHIN Kotbee and CHOI Bo-Young
	16-03	A Predictive System for International Trade Growth CHON Sora
	16-02	A Short-term Export Forecasting Model using Input- Output Tables PYO Hak K. and OH Soo Hyun
	16-01	Access to Credit and Quality of Education in Vietnam HUR Yoon Sun
■ 2015	15-03	Estimating Regional Matching Efficiencies in the Indian Labor Market: State-level Panel Data for 1999-2011 LEE Woong
	15-02	The Distribution of Optimal Liquidity for Economic Growth and Stability PYO Hak K. and SONG Saerang
	15-01 Income Distribution and Growth under A S of Endogenous and Neoclassical Growth	
■ 2014	14-05	Regional Financial Arrangement in East Asia: Policy Proposal for Strengthening the Chiang Mai Initiative Multilateralization Pravin Krishna, Jiyoung Choi, and Tae-Hoon Lim
	14-04	Labor Market Flexibility and Different Job-Matching Technologies across Regions in India: An Analysis of State-Level Dis-aggregate Matching Functions Woong Lee

e Inequality and Competition: Evidence Minsoo Han	14-03	
d Fiscal Policy Effectiveness Ju Hyun Pyun and Dong-Eun Rhee	14-02	
d Growth: Nonlinear Evidence from Hetero- el Data oyeon Cho, Bo Min Kim, and Dong-Eun Rhee	14-01	

국문요약

1997년 외환위기 이후부터 한국은 지속적으로 경상수지 흑자를 이어 왔으며, 최 근 급속히 증가하여 2015년에는 경상수지 흑자 규모가 GDP의 7.7%에 이르고 있 다. 본 논문은 한국이 이토록 큰 규모의 경상수지 흑자를 경험하고 있는 이유를 OECD 국가의 자료를 사용하여 분석하였다. 본 논문의 분석결과에 따르면 한국의 경상수지가 최근에 증가하는 이유는 한국이 겪고 있는 인구구조의 변화에 주로 기 인한다. 고령화가 많이 진행되고 있는 다른 OECD 국가들의 경우에도 인구구조의 변화는 이들 국가의 경상수지 변화가 장기적으로 변화하는 모습을 대체로 잘 설명 한다. 한국의 경상수지는 장차 인구구조의 변화를 반영하여 2042년에는 0으로 줄 어 들고 그 후에는 경상수지가 적자로 전화될 것으로 예상되었다. 한국은 경상수 지 흑자를 줄이기 위하여 환율을 조정하거나 정부재정을 확대하도록 권고받고 있 는데 이러한 정책의 효과는 그리 크지 않은 것으로 분석되었다. 예를 들어 1%의 경상수지를 줄이기 위해 환율은 12%의 절상이 필요하며, 정부재정은 GDP 대비 5-6%의 적자재정이 필요하다. 이러한 수치는 환율 및 재정정책의 내생성을 고려 하지 않는 수치이며. 이들 변수들의 내생성을 고려한 경우 환율이 경상수지에 미 치는 직접적인 효과는 1.6배 늘어나는 데 그치고 재정정책의 효과는 오히려 감소 하는 것으로 분석되었다.

핵심용어: 경상수지, 인구구조, 고령화

한치록(韓治錄)

서울대학교 경제학과 졸업

미국 Michigan State University 경제학 박사

계량경제학보(Journal of Economic Theory and Econometrics), 편집장(2012~13년)

Econometric Theory, Associate Editor (2009~현재)

고려대학교 경제학부 교수

(現, E-mail: chirokhan@korea.ac.kr)

저서 및 논문

"GMM with Many Moment Conditions" (Co-authored with Peter C. B. Phillips), *Econometrica*, Vol. 74, No. 1, January 2006

『계량경제학 강의』(2016, 박영사)

신관호(申寬浩)

서울대학교 경제학과 졸업

미국 University of California, Los Angeles 경제학 박사

국민경제자문회의 위원 역임(2010~11년)

금융발전심의회 위원 역임(2013~15년)

고려대학교 경제학부 교수

(現, E-mail: khshin@korea.ac.kr)

저서 및 논문

From Miracle to Maturity: The Growth of the Korean Economy (co-authored with Barry Eichengreen and Dwight Perkins), Harvard University Asia Center and Harvard University Press, 2012.

"The Role of Labor Input in the Relationship between Investment and Uncertainty" (co-authored with Jaewoo Lee), *The American Economic Review*, 2000, v90 ♀|.

KIEP 발간자료회원제 안내

- 본 연구원에서는 본원의 연구성과에 관심있는 專門家,企業 및 一般에 보다 개방적이고 효율적으로 연구 내용을 전달하기 위하여「발간자료회원제」를 실시하고 있습니다.
- 발간자료회원으로 가입하시면 본 연구원에서 발간하는 모든 보고서 및 세미나자료 등을 대폭 할인된 가격으로 신속하게 구입하실 수 있습니다.

■ 회원 종류 및 연회비

회원종류	배포자료			
S	외부배포 발간물 일체	기관회원	개인회원	연구자회원*
3	최구매포 결산물 결제	30만원	20만원	10만원
А	East Asian Economic Review	8만원		4만원

* 연구자 회원: 교수, 연구원, 학생, 전문가풀 회원

■ 가입방법

우편 또는 FAX 이용하여 가입신청서 송부 (수시접수) 30147 세종특별자치시 시청대로 370 세종국책연구단지 경제정책동 대외경제정책연구원 지식정보실 학술출판팀 연회비 납부 문의전화: 044) 414-1179 FAX: 044) 414-1144


E-mail: sklee@kiep.go.kr

■ 회원특전 및 유효기간

- S기관회원의 특전: 본 연구원 해외사무소(美 KEI) 발간자료 등 제공
- 자료가 출판되는 즉시 우편으로 회원에게 보급됩니다.
- 모든 회원은 회원가입기간 동안 가격인상에 관계없이 신청하신 종류의 자료를 받아보실 수 있습니다.
- 본 연구원이 주최하는 국제세미나 및 정책토론회에 무료로 참여하실 수 있습니다.
- 연회원기간은 加入月로부터 다음해 加入月까지입니다.

KIEP 발간자료회원제 가입신청서

기관명	(한글) (한문)						
(성명)	(영문: 약호 포함)						
대표자							
발간물 수령주소	우편번호						
담당자 연락처	전화 E-mail: FAX						
회원소개 (간략히)							
사업자 등록번호	종목						
회원분류 (해당년	<u>-</u> 선에 ✔ 표시	시를 하여	주십시오)				
기 관 회 개 인 회	원 🗆 원 🗆		S 발간물일체			A 계간지	
게 한 외 현 □ 연 구 자 회 원 □							
* 회원번호			*	갱신통보	사항		
						(* 는 기재하지	마십시오)
특기사항							

Call for Papers for the

East Asian Economic Review

With great pleasure, the East Asian Economic Review is welcoming submissions.

O AIMS and SCOPE

The East Asian Economic Review is an economic journal, for the promotion of interdisciplinary research on international economics. Published as a quarterly by the Korea Institute for International Economic Policy, a Korean government-funded economic think-tank, the Journal is global in perspective and covers both theory and empirical research.

The Journal aims to facilitate greater understanding of all issues pertinent to diverse economies of East Asia through publication of rigorous analyses by renowned experts in the field. The EAER connects policy and theory, providing empirical analyses and practical policy suggestions for the economies in the region.

TOPICS COVERED

The East Asian Economic Review brings together articles from many different realms of economics at both regional and global levels. Issues relevant to Esat Asia's diverse economy are the major focuses. Specific areas of interest include, but are not limited to:

- Trade and Investment Issues Economic Integration APEC
- ASEAN ASEM International Finance Liberalization of Financial Services and Capital International Cooperation for Korean Unification

EAER Abstracting and Indexing Services

The East Asian Economic Review is indexed and abstracted in EconLit, e-JEL, JEL on CD, OCLC WorldCat, ProQuest, Google Scholar, ECONIS, EconBiz, EBSCO, British Library and SSRN, Emerging Sources Citation Index (ESCI) and registered to Ulrichsweb. ITS-MARC. CrossRef and Korea Citation Index.

O NOTE FOR AUTHORS

SUBMISSION GUIDELINE:

Refer to our website **www.eaerweb.org** and Click "Submission" menu at the top of the main page.

SUBMISSION DEADLINE:

The journal is published every March, June, September and December of each year and submissions are accepted for review on an ongoing basis (No specific deadline).

REVIEW PROCESS:

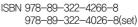
We have introduced a "fast-track" system, which takes four to five weeks on average from submission to the first round review in order to provide quick and authoritative decisions to the authors. In general, the journal's manuscript decision process includes submission, editorial decision on whether the paper should be reviewed, peer review, decisions after review, revision, acceptance in principle, final submission and acceptance, proofs, advance online publication, and print publication.

For further information regarding submission,
Contact EAER Editorial Office:
[30147] 3rd Floor, Building C, Sejong National Research
Complex, 370 Sicheong-daero, Sejong-si, Korea.
Tel: 82-44-414-1171/1251 FAX: 82-44-414-1044

Email: eaer@kiep.go.kr Website: www.eaerweb.org

• AWARD FOR EAER


The East Asian Economic Review Award is given annually to articles that have made exemplary contributions to advance the public as well as academic understanding of international economics. Every article published in the journal is given an honorarium of KRW 2,500,000; and annual nominations for the outstanding and noteworthy articles include KRW 5,000,000 prize and a detailed nomination statement describing how the selected papers have contributed to the knowledge of



What Explains Current Account Surplus in Korea?

Han Chirok and Shin Kwanho

Since the currency crisis in 1998, Korea has experienced continuous current account surpluses. Recently the current account surplus increased more rapidly amounting to 7.7% of GDP in 2015. In this paper, we investigate the underlying reasons as to why Korea's current account surpluses are widening. We find that the upward trend in Korea's current account surpluses is essentially explained by its demographical changes. Demographical changes are so powerful that they explain, quite successfully, the current account balance trends of other economies with highly aged populations such as Japan, Germany, Italy, Finland and Greece as well. When we add the real exchange rate as an additional explanatory variable, it is statistically significant with the right sign, but the magnitude explained by it is quite limited. For example, in order to reduce current account surplus by 1 percentage point, a whopping 12% depreciation is needed. If Korea's current exchange rate is undervalued 4 to 12 percent than the level consistent with fundamentals, it is impossible to reduce Korea's current account surplus to a reasonable level by adjusting the exchange rate alone. Another way to reduce current account surplus is to expand fiscal policies. We find, however, that the impact of fiscal adjustments in reducing current account surplus is even more limited. If we allow endogenous movements of exchange rate and fiscal policy, the impact of exchange rate adjustment increases by 1.6 times but that of fiscal policy decreases that it is no longer statistically significant.

