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Abstract 

There is a large concentration of chemical firms around Mumbai, and the Maharashtra 
Pollution Control Board has been actively monitoring them. However, there is a large 
variation in the degree of compliance among the firms measured in terms of ratio of 
standard to effluent quality. The factors responsible for large variations in the compliance 
to the pollution standards by the firms might be laxity of formal environmental regulation 
by the government, use of command and control instruments, and the absence of informal 
regulation by the communities in the neighbourhood of the firms. The objective of this 
paper is to compute output-oriented technical efficiency and environmental efficiency 
using the Stochastic Frontier Approach. In this paper we have incorporated the 
environmental effects in the stochastic frontier approach and have computed 
environmental efficiency of the firms. The stochastic production frontier approach allows 
only one (aggregated) output to be modelled. To incorporate environmental efficiency 
into a description of the production process of chemical industry, the environmentally 
detrimental variable has to be specified as an input. Biological oxygen demand (BOD) 
load and chemical oxygen demand (COD) load is modelled as a conventional input in two 
different Models. The SFA technical efficiency measure is output augmenting and has to 
be transformed to allow minimisation of the environmentally detrimental input. The panel 
data of 50 water-polluting small to medium-scale firms for three-year period of 2004–06 
was collected in a primary survey of chemical industries around Mumbai. Finally, we 
have also estimated "shadow prices" of BOD and COD. These "shadow prices" provide a 
measure of the cost to firms, in terms of foregone real output, of achieving reductions in 
BOD and COD and are upper bounds to true shadow prices.  
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1. Introduction 

A variety of environmental performance indexes have been proposed in the past, and they 

can be grouped into two categories: those which adjust conventional indexes of 

productivity change, and those which adjust conventional measures of technical 

efficiency. In both cases the adjustment has taken the form of incorporating quantifiable 

environmental effects into the output vector. The indexes can also be categorize; into 

those which are calculated using deterministic techniques, which can be either parametric 

or nonparametric, and those which are estimated using stochastic techniques, which are 

exclusively parametric  

 

Pittman (1983) was perhaps the first to develop an index of productivity change which 

takes environmental effects into account. He developed an adjusted Tornqvist 

productivity index in which environmental effects are treated as additional undesirable 

outputs whose disposability is costly. However, since undesirable outputs are not 

generally priced on markets, this approach is feasible only if the undesirable outputs can 

be valued by their shadow prices. Pittman (1983) used econometric techniques to estimate 

the shadow price of a single undesirable output, biochemical oxygen demand, generated 

in the process of converting wood pulp to paper in a sample of thirty Michigan and 

Wisconsin mills in 1976, where this shadow price was constrained to be constant across 

all observations.  

 

The objective of this paper is to compute output-oriented technical efficiency and 

environmental efficiency using the Stochastic Frontier Approach (SFA). . In this paper we 

shall, therefore, look at a traditional neo-classical production function for incorporate 

environmental effects and to compute environmental efficiency from the estimation of a 

stochastic production frontier. Technical efficiency scores reflect the possible increase in 

outputs conditional on a set of inputs. The stochastic production frontier allows only one 

(aggregated) output to be modelled. Environmental efficiency, in accordance with 

existing literature, is defined as the ratio of minimum feasible use to observed use of an 

environmentally detrimental input, conditional on observed levels of the desirable output 

and the conventional inputs. If the environmentally detrimental variable is modelled as an 

input, a single input efficiency score can reflect environmental efficiency Because of the 

similarities between pollution and conventional inputs in the production function context, 

BOD and COD (in two different models) are modelled as an environmentally detrimental 



input in the translog production function. Using primary level panel (time series-cross-

section) data of 50 water-polluting firms for three-year period of 2004–06 we shall also 

estimate the "shadow prices" of BOD and COD. These "shadow prices" provide a 

measure of the cost to firms, in terms of foregone real output, of achieving reductions in 

BOD and COD and are upper bounds to true shadow prices.  

 

The next sections are planned as follows: Section 2 briefly deals with the review of 

literature; Section 3 enumerates the theoretical structure of the model; Section 4 describes 

the data used for analysis; Section 5 gives us the empirical findings and the last section 

concludes. 

 

2. Review of Literature 

 

As discussed in the previous section, one of the first attempts to analyse producer 

environmental performance from an estimated bad output shadow price was made by 

Pittman (1983). Fare et al. (1989) also treated environmental effects as undesirable 

outputs, and they developed an "enhanced hyperbolic productive efficiency measure" that 

evaluates producer performance in terms of the ability to obtain an equiproportionate 

increase in desirable outputs and reduction in undesirable outputs. They developed their 

measure on a strongly disposable technology (applicable if undesirable outputs are freely 

disposable) and on a weakly disposable technology (applicable when it is costly to 

dispose of undesirable outputs, due perhaps to regulatory action).  

 

Fare et. al. proposed using a nonparametric mathematical programming technique known 

as data envelopment analysis (DEA) to construct strong-disposal and weak-disposal best-

practice production frontiers, and to calculate their enhanced efficiency measure. A 

comparison of the two values of their measure provides a measure of the cost (in terms of 

foregone revenue) of a lack of free disposability. They applied their techniques to 

Pittman's data. Their approach was later applied to U.S. electricity generation data 

(including SO, emissions as the undesirable output) by Yaisawarng and Klein (1994), 

who calculated adjusted measures of efficiency and productivity change, and by Turner 

(1995), who calculated adjusted efficiency measures and marginal abatement costs. This 

DEA approach has also been applied to aggregate OECD data including CO, emissions 

by Zofio and Prieto (1996). 



 

Fare et al. (1993) also treated environmental effects as undesirable outputs, and they used 

a parametric mathematical programming technique to calculate the parameters of a 

deterministic translog output distance function. This enabled them to calculate an 

enhanced hyperbolic efficiency measure, and also to calculate the shadow prices of the 

undesirable outputs. They used Pittman's data to illustrate their techniques. Although 

these shadow prices could have been used to construct Pittman's adjusted Tornqvist 

productivity index, they did not undertake such a construction.  

 

Hetemaki (1996) used econometric techniques to estimate deterministic and stochastic 

variants of a translog output distance function, and to obtain estimates of technical 

efficiency and the shadow prices of undesirable outputs, in the Finnish pulp and paper 

industry. The general strategy of the above studies has been to include environmental 

effects in the output vector, and then to obtain inclusive measures of technical efficiency, 

and occasionally productivity change, which incorporate the generation of one or more 

environmental effects as by-products of the production process. This is an 

accomplishment in itself --- acknowledging that producers produce undesirable as well as 

desirable outputs when evaluating their performance. However, in several of these studies 

the shadow prices of the undesirable outputs are also calculated or estimated. This was an 

additional accomplishment as shadow prices can be used to generate an adjusted index of 

productivity change, and they can also be interpreted as marginal abatement costs which 

can be compared with marginal benefit calculations. 

 

In the past, the functional forms most widely used for estimating production relationship 

have been the Cobb-Douglas and the constant elasticity of substitution (CES) production 

functions. While these forms are useful and simpler for drawing conclusions, they have in 

the recent past, been rendered inappropriate for some purposes because of the restrictions 

that they impose on the data. It has been noted by several researchers that the imposition 

of constant elasticities of substitution and transformation is particularly restrictive in 

models specifying more than one output or more than two inputs; it is especially 

restrictive when one output is an externality. In this paper, as the model includes two 

outputs (a normal good and water pollution, an externality) and three inputs (capital, 

labour and materials) a more flexible production function needs to be used. In this paper 

we shall therefore use the translog production function. It has been established in the 



literature that this function is “one of a class of general production functions that may be 

considered second-order approximations to any production function and that impose no 

restriction on the substitution relationship among inputs”.1 

 

How the behaviour of a firm that faces environmental regulation can be modelled, has 

always been an important component of environmental economics. This is primarily 

because firms incur costs to comply with regulation. The standard approach in the 

environmental economics literature characterizes pollution as a public "bad" that results 

from "waste discharges" associated with the production of private goods. Waste 

emissions or pollution is treated simply as another factor of production. This is because 

attempts, for example, to cut back on waste discharges will involve the diversion of other 

inputs to abatement activities, thereby reducing the availability of these other inputs for 

the production of goods. Reductions in emissions or waste discharges, in short, should 

result in reduced output. Similarly, any allowed increase in pollution (like lowering norms 

of regulation) frees resources that are used for abatement which can be used to increase 

output. In this paper, therefore the undesirable output will be treated as an input as the 

behaviour of this output is similar to that of an input.  

 

Stochastic frontier production function has been used by researchers to examine firms’ 

technical efficiency. Early applications of stochastic frontier production function to 

economic analysis include those of Aigner et al. (1977) in which they applied the 

stochastic frontier production function in the analysis of U.S agricultural data. Battese and 

Corra (1977) applied the technique to the pastoral zone of Eastern Australia. More 

recently, empirical applications of the technique in efficiency analysis have been reported 

by Battese and Coelli (1992); Ajibefun and Abdulkadri (1999); and Ojo and Ajibefun 

(2000). In addition, Shazali et al. (2004) examined the technical efficiency of the 

Malaysian Furniture Industry using the stochastic frontier production model. They found 

that actual firm’s output is 20 percent less than maximal output which can be achieved 

from the existing level of inputs.  

 

In this paper we shall follow the Reinhard, Lovell, and Thijssen (1999) model to estimate 

the technical and environmental efficiency of a panel of chemical firms in and around 

                                                 
1 Pittman (1981) 



Mumbai. In this analysis, in two different cases, BOD and COD are treated as the 

environmentally detrimental input. A stochastic translog production frontier is specified 

to estimate the output-oriented technical efficiency, and the environmental efficiency is 

calculated using the estimated parameters. 

 

3. Estimation of Technical and Environmental Efficiency 

The stochastic frontier production function developed by Aigner et al. (1977), and 

Meeusen and van den Broeck (1977) was based on an econometric specification of a 

production frontier. A generalised stochastic production frontier2 for a frontier production 

function can be defined as: 

 

        )exp();,( iitititit UVbZXFY −=                     (1) 

     i = 1,2,…..I,      t = 1, …., T 

 

In this model, a production frontier defines output as a function of a given set of inputs, 

Xit, (capital, labour and materials) together with technical inefficiency effects. Zit is bad 

output which, in this model, is taken as an input as discussed in the previous section3.  

 

The stochastic frontier is also known as the composed error model, because it postulates 

that the error term is composed of two independent error components, Vit and Ui, where 

Vit is a random error term, independently and identically distributed as N (0, 2
vσ ), 

represent any stochastic factors beyond the firms’ control affecting its ability to produce 

on the frontier, such as luck and weather, where a symmetric component is normally 

distributed. It can also account for measurement error in Yit or minor omitted variables. 

The asymmetric component, Ui, in this case distributed as a half-normal, can be 

interpreted as pure technical inefficiency. This component has also been interpreted as an 

unobservable or latent variable, in most cases representing managerial ability. It is a 

nonnegative random error term, independently and identically distributed as ),( 2
uN σµ+ , 

intended to capture time invariant technical inefficiency in production, measured with an 

output orientation as the ratio of observed to maximum feasible output.  

 

                                                 
2 Similar to the characteristics proposed by Battese and Coelli (1992) 
3 Namely BOD in model 1 and COD in model 2 



The stochastic version of the output-oriented technical efficiency measure is given by the 

expression 

)exp()]exp(.)([ iiiti UVFYTE −=•=           (2) 

As the error component iU , is asymmetric and 1)exp(0   ,0 ≤−≤≥ ii UU . Technical 

inefficiency must be separated from statistical noise in the composed error term )( iit UV −  

to implement equation (2). Battese and Coelli (1988, 1992) have proposed the technical 

efficiency estimator 
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To derive technical and environmental efficiency in this model, we use the translog 

stochastic production frontier. These calculations follow the direction of Reinhard, Lovell 

and Thijssen (1999). Writing equation (1) in translog form, we get  
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where bjk = bkj. The logarithm of the output of a technically efficient producer (using Xi 

and Zi to produce iŶ ) is obtained by setting ui = 0 in the above equation. The logarithm of 

the output of an environmentally efficient producer (using Xi and F
iZ to produce Yit) is 

obtained by replacing Zi with F
iZ 4 and setting ui = 0 in the above equation to obtain 
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The stochastic measure of environmental efficiency is preferred over the deterministic 

version because in the former case the farm is compared with an efficient farm 

encountering identical stochastic conditions. In the latter case the firm is compared with 

                                                 
4 where F

iZ is the minimum feasible environmentally detrimental input that would have been used for 
production if the firm was technically efficient (i.e. producing on the frontier) 



an efficient firm without any noise. Thus a farm with bad weather conditions or luck (a 

negative v), has an output-oriented efficiency score that is larger than in the deterministic 

case and an environmental efficiency score that is also larger than in the deterministic 

case. 

 
The logarithm of the stochastic environmental efficiency measure can be defined as: 
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To isolate it we can set equations 1 and 2 equal; and we get 
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which can be rewritten as 
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which can be solved for lnEEi by substituting it for ( i
F
i ZZ lnln − ) to obtain 
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In this analysis, we have calculated environmental efficiency using the positive root of the 

formula in the above equation. This is because a technically efficient firm, by definition, 

is necessarily environmentally efficient. In the above equation, ui equals to zero implies 

lnEEi = 0 only if the positive root of the expression is used. Conditional on (Xij, ui) or 

equivalently conditional on (Xij, Yij), EEi and Zi are inversely related. Both relationships 

hold irrespective of the sign of bzz. 

 

4. Data Descriptions 

For the econometric analysis, data for 50 firms for pH levels, BOD, COD, SS, and the 

amount of oil and grease concentrations of the wastewater were collected from the 

Maharashtra Pollution Control Board (MPCB) field offices of areas in and around 

Mumbai where there is high concentration of chemical industries. As we wanted to look 



at a water polluting industry, the chemical industry was chosen for this study. According 

to the Central Pollution Control Board, the basic chemical industry constitutes among the 

17 major polluting industries in India. The firms in the Basic Chemical industry segment 

produce intermediate products such as industrial gases, organic and inorganic acids and 

bases, catalysts, dyes and pigments intermediaries, salts, metal compounds, and other 

minerals that are needed as inputs in various other industries including Leathers, Textiles, 

Dyes and Pigments, Paper, Plastics, Rubber, Pharmaceuticals, Food processing, and 

Chemicals itself. These industries were concentrated in the region in and around Mumbai; 

namely, Thane, Navi-Mumbai, Raigarh and Kalyan. 

 

Data was finally collected for the areas Thane, Taloja, Patalganga, Roha, Khopoli, 

Dombivilli, Ambernath, Saravali, Bhiwandi and Pen. The norms followed by the MPCB 

were 100ng/l for BOD, 250mg/l for COD and 100mg/l for suspended solids. Many firms 

did not record the absolute load of pollution as there was no compulsion from the MPCB 

to do so. However, the wastewater volume had to be recorded as there was a limit set by 

the MPCB on the wastewater generated by the plant. The pollution loads were therefore 

calculated by multiplying the pollution concentrations with the volume of wastewater 

generated by each plant. 

 

The plant level data from firms were equally difficult to collect; many of the multi-plant 

firms, which had available data, refused to give plant level information, citing that these 

were confidential data. On the other hand, many of the single plant firms were not listed; 

as a result the method of recording data was extremely poor. They were also suspicious 

whether such information could be used against them by the authorities or the media. 

Hence the data that was collected from the plants were only in value terms and not in 

physical units. They were then normalised using constant base year 1990 prices. 

 

The table below (Table 1) gives us the descriptive statistics of the variables used in the 

analysis. As there are two important components pollution values that are used in the 

analysis, we have taken each separately to analyse two models: Model 1 where BOD is 

used as the environmentally detrimental input and Model 2 where COD is used as the 

environmentally detrimental input. 

  

 



Table.1: Characteristics of the Sample Variables 
 Variables Unit Mean Std. Dev. Min. Max. 
 Y Output Rupees crores at 

constant prices 
1.529308 2.877675 0.005287 15.86341 

 X1 Capital Rupees crores at 
constant prices 

0.89828 1.624462 0.008796 9.221887 

 X2 Labour Rupees crores at 
constant prices 

0.095338 0.190258 0.00133 0.945651 

 X3 Material Rupees crores at 
constant prices

0.789654 1.520073 0.001389 8.789243 

Model 1 
 

Z BOD kg 998.2582 3922.404 0.000604 34640.48 

Model 2 Z COD kg 
 

2976.725 12223.09 0.001725 115193.8 

 

5. Empirical Findings 

The output-oriented technical efficiency of each farm is assumed to be constant during 

the research period and is allowed to follow a two-parameter half normal distribution. The 

time-invariant specification is not unreasonable, since there are just three observations per 

firm available in the data set. A likelihood-ratio test of the hypothesis that inefficiency is 

absent is rejected, with a test statistic of 1651.53. The estimation results of the first model 

(Model 1) where BOD is treated as the environmentally detrimental input is reported in 

Table 2. 

 

It should be noted that the estimated coefficients that are associated with labour or X2 are 

not significant. Other than that all estimated coefficients are significant. One of the 

reasons that the estimates associated with labour are not significant could be that in 

general, the units of labour used for estimation is labour hours and not wage-bill. As we 

were unable to collect data (as plant level data is generally not disclosed) we had to use 

wage bill as a proxy, which might not fit the function as well as labour hours. 



 

Table 2: Parameter Estimates with BOD as polluting input (Model 1) 
Variables Coeff. names Coeff. Estimates Significant 

lnX1 bk -0.461 0.021 
lnX2 bl 0.286 0.189 
lnX3 bm 0.965 0.001 
lnZ bz 0.194 0.060 
lnX1sq/2 bkk 0.084 0.040 
lnX2sq/2 bll 0.012 0.842 
lnX3sq/2 bmm 0.230 0.000 
lnZsq/2 bzz -0.037 0.015 
lnX1lnX2 bkl -0.035 0.350 
lnX1lnX3 bkm -0.179 0.001 
lnX2lnX3 blm 0.045 0.362 
lnX1lnZ bkz 0.082 0.001 
lnX2lnZ blz -0.007 0.727 
lnX3lnZ bmz -0.025 0.110 
constant c 1.897 0.052 

 
 

Before turning to an investigation of technical and environmental efficiency, we first 

consider the structure of the estimated production technology. Table 3 reports elasticities 

of output with respect to each input evaluated at output deciles. The elasticities of output 

with respect to the three inputs (excluding BOD) are positive for 100% of the 

observations. The sum of the elasticities of output with respect to these four inputs 

generates an estimated scale elasticity which indicates the presence of decreasing returns 

to scale except for the last three deciles. It is possible that for the larger plants, it is easier 

to undertake increased abatement costs through environmental regulation and convert it to 

benefits accruing to the firm: that cleaner practice reduces costs. Also, for larger plants, 

the total load of pollution will be higher and as a result, can lead to a negative impact on 

output. 

 

The estimated scale elasticity increases with a decline in output and has a value of 0.955 

at the sample mean. Likelihood ratio tests led to rejections of homotheticity and linear 

homogeneity in all four inputs significant at 1 percent level.  

  



 
Table.3: Elasticities of Output with Respect to Each Input, by Output Deciles (Model 1) 

Output 
Deciles 

Capital Labour Materials BOD Returns to 
Scale 

1 0.057 0.173 0.467 0.093 0.790 
2 0.000 0.193 0.573 0.078 0.844 
3 0.071 0.185 0.535 0.071 0.862 
4 0.070 0.196 0.590 0.042 0.898 
5 0.068 0.202 0.629 0.033 0.931 
6 0.090 0.204 0.641 0.018 0.953 
7 0.049 0.219 0.717 0.011 0.996 
8 0.071 0.220 0.712 0.019 1.021 
9 0.032 0.241 0.822 -0.005 1.090 

10 0.198 0.233 0.800 -0.062 1.169 
 
 
The estimated elasticities of output with respect to BOD are of particular interest. They 

have a mean value of 0.03, with a standard deviation of 0.014, suggesting that, holding 

other inputs constant, a 1% reduction in BOD requires a sacrifice of 3/100th of 1% of 

marketable output. Using mean values reported in Table 1 this estimated abatement cost 

elasticity implies that a reduction of approximately 10 kilograms of BOD load would 

"cost" approximately Rs. 4588 at 1990 prices. This, in turn, suggests a "shadow price" of 

BOD of approximately Rs. 459 per kilogram. The calculated "shadow price" of BOD 

decreases with plant size because the estimated elasticity of output with respect to BOD 

decreases with plant size. This can be because of the fact that a larger amount of pollution 

load (due to a bigger plant size) may affect output adversely. 

 

In Model 2, we take COD as the environmentally detrimental input. A likelihood-ratio 

test of the hypothesis that inefficiency is absent is rejected, with a test statistic of 1622.50. 

The parameter estimates, of the second model are reported in Table 4. Here also we see a 

similar situation regarding the significance of the estimates. The estimated coefficients 

that are associated with labour or X2 are not significant, similar to Model 1. Other than 

that all estimated coefficients are significant. As discussed earlier the unit of 

measurement of labour might be the cause for such discrepancies: that wage bill might 

not be a good proxy for labour in this analysis. 



 
Table.4: Parameter Estimates with COD as polluting input (Model 2) 

Variables Coeff. names Coeff. Estimates Significant 
lnX1 bk -0.5365659 0.021 
lnX2 bl 0.1901496 0.445 
lnX3 bm 0.8447446 0.001 
lnZ bz 0.3723596 0.001 
lnX1sq/2 bkk 0.085888 0.035 
lnX2sq/2 bll 0.0000216 0.999 
lnX3sq/2 bmm 0.206266 0.001 
lnZsq/2 bzz -0.0521102 0.001 
lnX1lnX2 bkl -0.041133 0.283 
lnX1lnX3 bkm -0.1727 0.001 
lnX2lnX3 blm 0.0435051 0.375 
lnX1lnZ bkz 0.0764061 0.002 
lnX2lnZ blz 0.0029543 0.892 
lnX3lnZ bmz -0.0026228 0.877 
constant c 1.03311 0.042 

 
 
Following the structure of Model 1, we shall first discuss the structure of the production 

technology. The elasticities of output with respect to the three inputs (excluding COD) are 

positive for 100% of the observations, similar to Model 1. The sum of the elasticities of 

output with respect to these four inputs generates an estimated scale elasticity which 

indicates the presence of decreasing returns to scale except for the last three deciles. As 

we have discussed earlier, it might be easier for the larger plants to undertake increased 

abatement costs through environmental regulation and convert it to benefits accruing to 

the firm: that cleaner practice reduces costs. Also, for larger plants, the total load of 

pollution will be higher and as a result, can lead to a negative impact on output.  

 

The estimated scale elasticity increases with a decline in output and has a value of 0.942 

at the sample mean. Likelihood ratio tests led to rejections of homotheticity and linear 

homogeneity in all four inputs significant at 1 percent level. 



 
 

Table 5: Elasticities of Output with Respect to Each Input, by Output Deciles (Model 2) 
Output 
Deciles 

Capital Labour Materials COD Returns to 
Scale 

1 0.073 0.163 0.403 0.109 0.749 
2 0.013 0.181 0.511 0.102 0.807 
3 0.075 0.175 0.495 0.087 0.833 
4 0.079 0.187 0.560 0.051 0.878 
5 0.067 0.195 0.607 0.047 0.916 
6 0.072 0.198 0.632 0.037 0.939 
7 0.037 0.210 0.709 0.032 0.989 
8 0.060 0.204 0.718 0.035 1.017 
9 0.017 0.222 0.838 0.016 1.093 

10 0.172 0.228 0.876 -0.071 1.205 
 

 

Again, we shall try to calculate the shadow prices using the estimated elasticities of 

output with respect to COD. The elasticities have a mean value of 0.04, with a standard 

deviation of 0.016, suggesting that, holding other inputs constant, a 1% reduction in COD 

requires a sacrifice of 4/100th of 1% of marketable output. Using mean values reported in 

Table 1 this estimated abatement cost elasticity implies that a reduction of approximately 

30 kilograms of COD load would "cost" approximately Rs. 6117 at 1990 prices. This, in 

turn, suggests a "shadow price" of COD of approximately Rs. 204 per kilogram. The 

calculated "shadow price" of COD decreases with plant size because the estimated 

elasticity of output with respect to COD decreases with plant size. This can be because of 

the fact that a larger amount of pollution load (due to a bigger plant size) may affect 

output adversely. 

 

The estimated technical and environmental efficiencies are summarized in Table 6 for 

Model 1 and Table 7 for Model 2. Output-oriented technical efficiency is estimated using 

equation (3). Estimates of output-oriented technical efficiency are pretty low, with a large 

variation, ranging from 0.123 to 0.720 with a mean of 0.258 in case of Model 1. In case 

of Model 2, the results are similar: a low technical efficiency with a large variation, 

ranging from 0.138 to 0.779 with a mean of 0.283. These low degrees of technical 

efficiency suggest that a considerable amount of marketable output is sacrificed to 

resource waste.  



Table 6: Estimates of Technical Efficiency and Environmental Efficiency: Model 1 

 Output-oriented Technical 
Efficiency 

Environmental 
Efficiency 

2003-04 mean 0.282 0.062 
2004-05 mean 0.285 0.045 
2005-06 mean 0.283 0.053 
Overall mean 0.258 0.053 
Overall minimum 0.123  0.000+ 

Overall maximum 0.720 0.636 
 
 

Table 7: Estimates of Technical Efficiency and Environmental Efficiency in Model 2 
 Output-oriented Technical 

Efficiency 
Environmental 

Efficiency 
2003-04 mean 0.283 0.105 
2004-05 mean 0.287 0.079 
2005-06 mean 0.283 0.088 
Overall mean 0.283 0.091 
Overall minimum 0.138 0.001 
Overall maximum 0.779 0.675 

 

Environmental efficiency is estimated using equation (9). Environmental efficiency is 

much lower on average and exhibits a similar kind of variability like that of output–

oriented technical efficiency, with a range of from 0.00+ to 0.636 with a mean of 0.053 in 

case of Model 1. Similar results were obtained from Model 2: a large variability and a 

low value. The efficiency values ranged from 0.001 to 0.675 with a mean of 0.091. 

However the mean value of environmental efficiency in Model 2 is considerably higher 

than that of Model 1. 

 

It is also interesting to note that the environmental efficiency values were actually 

fluctuating each year. Environmental efficiency declined from 2003-04 to 2004-05 in 

both Model 1 and Model 2; however, the values rose from 2004-05 to 2005-06, but not to 

the level of 2003-04 in both cases. This shows that the measures that were incorporated to 

reduce pollution were either not working, or some lax monitoring took place between the 

years. As the technical efficiency values were also low, it might be possible that the firms 

that were under regulation were simply making abatement expenditures as much as 

necessary to not be under any penalty, without making any effort to increase their 

efficiency so that they could continue production. This may be the reason that the smaller 

firms were facing decreasing returns to scale. 



 

To find out the relationship between size of firms, returns to scale, technical efficiency, 

environmental efficiency and pollution control intensity, we have calculated the 

correlation coefficients between these variables. Total turnover of the firm is taken as a 

proxy of firm size, while pollution control intensity is measured by turnover produced per 

kg of pollution load. A higher value of the latter ratio reflects a higher level of control. 

The results are summarized in the tables below: 

 

Table 8: Correlation matrix for Model 1 (where Z = BOD) 
 Returns to 

Scale 
Technical 
Efficiency 

Environment
al Efficiency 

Firm size Pollution 
Intensity 

Returns to 
Scale 

N. A.     

Technical 
Efficiency 

Positive and 
significant 

N. A.    

Environmental 
Efficiency 

Negative and 
significant 

Positive and 
significant 

N. A.   

Firm size 
 

Positive and 
significant 

Positive and 
significant 

Negative and 
significant 

N. A.  

Pollution 
Control 
Intensity 

Negative and 
significant 

Not 
significant 

Positive and 
significant 

Negative and 
significant 

N. A. 

Note: All significant levels are at 1 percent. 

 

Table 9: Correlation matrix for Model 2 (where Z = COD) 
 Returns to 

Scale 
Technical 
Efficiency 

Environment
al Efficiency 

Firm size Pollution 
Intensity 

Returns to 
Scale 

N. A.     

Technical 
Efficiency 

Positive and 
significant 

N. A.    

Environmental 
Efficiency 

Negative and 
significant 

Positive and 
significant 

N. A.   

Firm size 
 

Positive and 
significant 

Positive and 
significant 

Negative and 
significant 

N. A.  

Pollution 
Control 
Intensity 

Negative and 
significant 

Not 
significant 

Positive and 
significant 

Negative and 
significant 

N. A. 

Note: All significant levels are at 1 percent. 

The results are same for both models. We can observe that while the efficiency scores are 

positively correlated with each other the interesting results come from the relationship 

between environmental efficiency, pollution intensity and returns to scale. Firms with 

higher returns to scale as well as larger outputs are associated with low values for 



pollution intensity as well and environmental efficiency. This may be because of the fact 

that larger firms are able to get away with any kind of violations because of their clout in 

the government and a large market share. Also, the process of making large industries pay 

are very long as undue emphasis is placed on criminal procedure. “The process of taking 

industry to the court is torturous and drags on for years. We have cases which are pending 

since 20 years”, says Rashmi Mayur of the International Institute for Sustainable Future, 

who is involved in many environmental cases in the Mumbai High Court. 

 

6. Summary of Findings  

 

The estimated shadow prices of pollutants have to be equal for all the firms if pollution 

taxes are levied on all the firms in order to obtain their conformity with the prescribed 

standards and all the firms reduced pollution loads to meet the standards. Since there are 

no pollution taxes in India, command and control instruments are used to compel the 

firms to meet the set standards and a majority of firms do not comply with the standards.  

 

In this paper we have estimated "shadow prices" of BOD and COD. These "shadow 

prices" provide a measure of the cost to firms, in terms of foregone real output, of 

achieving reductions in BOD and COD. These "shadow prices" are upper bounds to true 

shadow prices. The shadow prices of pollutants estimated vary across the firms. The 

estimated shadow prices of pollutants BOD and COD for all the 50 chemical firms in the 

sample differ across the firms. The estimated sample averages for shadow prices of BOD 

and COD are Rs. 0.459 and Rs. 0.204 per a gram of pollutant, respectively. That means as 

per the current pollution abatement practices, the chemical industry in and around 

Mumbai is forgoing revenue amounting to Rs. 459 and Rs. 204 for reducing one kilogram 

of BOD and COD, respectively. Large differences in the firm specific shadow prices of 

pollutants reflect the use of inefficient pollution abatement technologies by the water 

polluting industries in India. The large differences in the estimates of shadow prices of 

pollutants bring out clearly the case for using economic instruments like pollution taxes 

or marketable pollution permits instead of currently used command and control 

instruments in India. 

 

The estimates of economies of scale show that the water polluting industry as a whole has 

decreasing returns to scale. We observe that the average figure in both Model 1 and 



Model 2 are 0.955 and 0.942 respectively. However, there is a positive correlation 

between the economies of scale and the turnover of a firm. 

 

We have also calculated the Environmental efficiency of the firms from the estimated 

coefficients. We find that the environmental efficiency of this firms to be quite low for 

both BOD and COD. This again stresses on the fact that the existing command and 

control instruments in India are unable to control pollution and is causing more harm that 

good for economic growth as well as the protection of the environment. We find that both 

return to scale and size of firm have a negative relationship with environmental efficiency. 

We also observe that returns to scale has a negative relationship with pollution intensity. 

This again stresses on the fact that the existing command and control instruments in India 

are unable to control pollution and is causing more harm that good for economic growth 

as well as the protection of the environment. An increase in environmental efficiency 

implies cleaner process and not the end-of pipe methods that are generally used by the 

plants to comply with existing regulations. A cleaner process of production will 

encourage in win-win situations and higher environmental efficiency while an end-of-

pipe method of compliance can lead to a reduction in pollution concentration of effluents 

which might not always lead to an improvement of the efficiency of firms. 
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