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This paper proposes a dichotomous choice model that is based on a transformed beta (or �z”) 
distribution. This model, called betit, nests both logit and probit and allows for various skewed 
and peaked disturbance densities. Because the shape of this density affects the estimated 
relation between the dichotomous choice variable and its determinants, the greater flexibility of 
the transformed beta distribution is useful in generating more accurate representations of this 
relationship. The paper considers asymptotic biases of the logit and probit models under 
conditions where betit should have been used. It also investigates small sample power and 
provides two examples of applications that illustrative of the capability of the betit model. 
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Betit: A Family That Nests Probit and Logit 
 

1. Introduction 
 

It is known fact that estimates of dichotomous choice models like probit and logit are 

sensitive to misspecification of the distribution of the disturbances that drive the data generating 

process.  These models assume that the disturbances are identically and independently distributed 

and are independent of the explanatory variables of the model.  Yatchew and Griliches (1985) 

illustrate the bias in probit estimates that results from heteroskedasticity and omitted variables.  

There is a parallel literature on truncated and censored regression models that points out similar 

results.1  This literature also experiments with different statistical distributions and designs tests for 

normality of the disturbance term of the limited dependent variable model (e.g., Bera, Jarque, and 

Lee, 1984). 

The focus of this paper is on the dichotomous choice modelbut the generalization 

proposed here is applicable to censored and truncated regression models as well.  Within the 

economics literature, there is little said about the choice between logit and probit.  While bias 

results from assuming the wrong distribution (e.g., Robinson, 1982; White, 1982), there are 

typically few theoretical arguments to guide the choice between the two models (Amemiya, 1981).  

The logistic distribution has slightly thicker tails than the normal, but how often can one argue that 

a disturbance of a particular data generating process should have thicker-than-normal tails?  A more 

plausible argument might be that, in many cases, the disturbance captures so many different 

influences that, by virtue of the central limit theorem, a normal distribution assumption seems 

warranted.  However, what constitutes “many,” and are these separate influences more or less 

similarly distributed such that the central limit theorem indeed applies?  When one utilizes 
                                                 
1 E.g., Arabmazar and Schmidt (1981, 1982), Goldberger (1983), Hurd (1979), Robinson (1982), Vijverberg (1987). 
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individual-level or household-level data, there may be a few dominant factors that violate the 

conditions for the application of the central limit theorem. 

This paper offers a family of distributions that nests both the logistic and normal 

distributions (Section 2).  This family allows for variations in skewness and kurtosis, which, as 

shown in Section 3, impacts the relationship between the dichotomous choice variable and its 

determining factors.  As the family is derived from the beta distribution, the associated 

dichotomous choice model is logically named betit.  There are two new parameters to estimate, and 

in the context of maximum likelihood methods, their estimation is relatively straightforward. 

The distribution family does have a history in the statistics literature.  Its earliest reference 

is Fisher (1921, 1935), and important work was done by Prentice (1974, 1975, 1976), who in fact 

also investigated a dichotomous choice model with it.  Other references are provided in Section 2.5.  

To the best of my knowledge, the family has been appeared twice in the economics literature.  

McDonald and Xu (1995) list it among several other families based on the beta.  They use it for 

fitting the distribution of income and of daily stock returns, as well as in a regression model to 

estimate the (financial) beta parameter of stocks.  Vijverberg (1997) uses two members of the 

family to generate random numbers and simulate the multivariate normal integral by importance 

sampling simulation methods. 

In this paper, Section 4 offers two applications of the betit model, concerning a labor force 

participation choice and a choice of employment in the private versus the public sector.  Both 

examples demonstrate the potential of the model: skewness and kurtosis are features of the 

distribution of the disturbance, and the estimated probability of one or the other choice can differ 

substantially from that computed with the probit model.  Section 5 concludes the paper. 
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2. The Transformed Beta Distribution 

2.1 Construction of the Distribution 
 

In its common form, the probability density function (pdf) of a beta distribution with 

parameters p and q is 

 1 11
( ) (1 )   for  [0,1]

( , )
p qg y y y y

B p q
− −= − ∈  (2.1) 

where ( , ) ( ) ( ) / ( )B p q p q p q= Γ Γ Γ +  and p,q > 0. Consider the transformation x = ln(y) − ln(1−y): x 

is defined on the range (-∞,∞). The pdf of x is easily derived to be:2 

 
1 1

( )
( , ) 1 1

qp x

x x

e
g x

B p q e e

−

− −

  =   + +   
%  (2.2) 

The moment generating function of x is given by: 

 

( )
( )

1 1
( ) ( )

( , ) 1 1

( , ) ( ) ( )
( , ) ( ) ( )

q txp
tx

g qx x

e
M t e g x dx dx

B p q e e

B p t q t p t q t
B p q p q

−−∞ ∞

− −
−∞ −∞

 = =  +  +

+ − Γ + Γ −
= =

Γ Γ

∫ ∫% %
 (2.3) 

To obtain moments of this distribution, we must take derivatives of the gamma function. Consider 

1

0

( ) r xr x e dx
∞

− −Γ = ∫ .  Then (Gradshteyn and Ryzhik, 1980:576): 

 1

0

( )
ln( ) ( ) ( )x rd r

e x x dx r r
dr

ψ
∞

− −Γ
= = Γ∫  (2.4) 

where one may compute ψ(r) as: 

 
1

1 1
( )

( )k

r C r
r k r k

ψ
∞

=

= − − +
+∑  (2.5) 

                                                 
2 In this, by selecting p=q=1 one recognizes the pdf of a logit distribution. This corresponds to a beta pdf g(y)=1, the 
uniform distribution defined over the unit interval. 
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and C is Euler's constant: C  ≈ 0.577216. This implies that the first two moments equal: 

 1 ( ) ( )p qτ ψ ψ= −  (2.6) 

 ( )2

2 1 1( ) ( ) ( ) ( )p q p qτ ψ ψ ψ ψ= − + +  (2.7) 

where 1ψ  denotes the first order derivative of ψ.  In general, the nth order derivative of ψ equals 

(Gradshteyn and Ryzhik, 1980:944): 

 1
1

0

1
( ) ( 1) !

( )
n

n n
k

r n
r k

ψ
∞

+
+

=

= −
+∑  (2.8) 

In equation (2.6), 1τ  is the mean of x and is not equal to 0 unless indeed p = q, in which case 

the distribution is symmetric. Perhaps more importantly, the variance of x, which is denoted as 2
,p qθ  

and equals 

 ( ) ( )2 22 2
, 2 1 1 1

0 0

( ) ( )p q
k k

p q p k q kθ τ τ ψ ψ
∞ ∞

− −

= =

= − = + = + + +∑ ∑ , (2.9) 

varies with p and q.3 

Given that we want to compare this transformed beta distribution with the standard normal, 

it will be necessary to standardize g. Define 1 ,( ) / p qz x τ θ= −  and, from now on, omit the subscripts 

on τ and θ. Then the standardized transformed beta pdf is: 

 
( )

( ) ( )

1
( ) .

( , ) 1 1

qp z

z z

e
f z

B p q e e

θ τ

θ τ θ τ

θ − +

− + − +

  =   + +   
 (2.10) 

For the sake of continuity with previous research (Barndorff-Nielsen, Kent and Srrensen, 1982), 

we shall refer to this as the z(p,q) distribution. 

                                                 
3 For p = q = 1, i.e., the logit distribution, we have 2 22 (1) 2 11 kθ ψ −∞∑= = .  In general, 

( ) 12 2 1 22 | | ( 2 )!20
n n nk B nnk π −−∞ =∑ =  (Gradshteyn and Ryshik, 1980:7), where 2B n  is a Bernouilli number. With n =1 

and 1/62B = , we find 2 2 / 31,1θ π= , as is wellknown (e.g., Ben-Akiva and Lerman, 1985:71; Greene, 2000:817). 
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2.2 Characteristics of the Transformed Beta Distribution 

The moment generating function of this distribution is given by: 

 
( ) ( ) ( )

( ) ( )

/ /,
( )

( , )

t t

f

t t t te B p q e p q
M t

B p q p q

τ θ τ θ

θ θ θ θ
− −+ − Γ + Γ −

= =
Γ Γ

 (2.11) 

which is more conveniently written as ( )( ) ( )fM t H h t=  where 

 
1

( )
( ) ( )

hH h e
p q

=
Γ Γ

 (2.12) 

 

 ( ) ln ln
t t

h t t p q
τ
θ θ θ

   = − + Γ + + Γ −   
   

 (2.13) 

 
These definitions imply that ( ) ( ) ( )kH h H h=  for every k and that 

 ( ) ( )( )1

1
( ) t th t p q

θ θ
τ

ψ ψ
θ θ

= − + + − −  (2.14) 

and 

 ( ) ( ) ( )( )1 1

1
( ) 1   for  1k

k k kk

t th t p q k
θ θ

ψ ψ
θ − −= + + − − >  (2.15) 

 
 Because of the definition of τ and 2θ , we have 1(0) 0h =  and 2(0) 1h = . This of course 

implies that E[z]=0 and Var(z)=1. Let us now then examine the skewness and kurtosis of z. The 

skewness equals 

 

( )
3

3
3 1 1 2 33 0

0

3 3 3
0 0

3 3 3 3
1 1

3 / 2

2 2 2 2
1 1

( ) 3

2 1 1
( ) ( )

1 1 1 1
( ) ( )2

1 1 1 1
( ) ( )

t
t

k k

k k

k k

d M
H h h h h h

dt

q k p k

q p q k p k

q p q k p k

µ

θ

=
=

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =

= = + +

 
= − + + 

− + −
+ +=

 
+ + + + + 

∑ ∑

∑ ∑

∑ ∑

 (2.16) 
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If q → 0, the numerator of (2.16) is dominated by 31/ q . The term inside the parentheses of the 

denominator is similarly dominated by 21/ q . As a result, as q → 0, 3 2µ →  and the distribution of 

z is right-skewed. In the same way, as p → 0, 3 2µ → −  and z is left-skewed. 

For other results, it is useful to find bounds for sums like 
0

1
( )n

k r k

∞

= +∑ . Because 
1

( )nr k+
 is 

declining at a diminishing rate, it is easy to see that, at least, 

 
0 ( 0.5)

1 1 1
( )n n n

kr r

dk dk
k r k k

∞ ∞∞

= −

< <
+∑∫ ∫ , (2.17) 

 
so that we may write 

 
1 ( 1) ( 1)

0 ,

1 1 1 1
( 1) ( ) ( 1)( ) ( 1)( 0.5)n n n n

k r nn r r k n r n rα

∞

− − −
=

 
< = <  − + − − − − 

∑ , (2.18) 

 
  
where ,r nα  is a number between 0 and 0.5 that depends on r and n and makes the expression in 

parentheses exactly equal to the sum.  The bounds provided in (2.18) imply that 
0

1
0

( )n
k r k

∞

=

→
+∑  as 

r → ∞ . 
Then, consider 3µ . As p → ∞ , we have 

 
( )
( )

3 / 2
3

,20
3 3 / 2 2

,3
2

0

1
( )2

1
( )

qk

q

k

qq k

q
q k

α
µ

α

∞

=

∞

=

−+→ =
  −
 + 

∑

∑
. (2.19) 

 
On the basis of (2.18), if p=∞, 3µ  lies in the interval ((q-0.5)3/2q-2,q3/2(q-0.5)-2). For example, for 

q=5 we have 3.38 0.55µ< < ; for q=10, 30.29 0.35µ< < . For these values, z is right-skewed. As p 

decreases, 3µ  diminishes (see equation (2.16)): whenever ( )p q> < , 3 ( )0µ > < . Finally, by 

equation (2.19), if p and q both approach ∞ , 3µ  approaches 0. 
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For the kurtosis of z, the moment generating function yields: 

 

4
4 2 2

4 1 1 2 2 1 3 44 0
0

4 4 4
0 0

( )( 6 3 4 )

3! 1 1
3

( ) ( )

t
t

k k

d M
H h h h h h h h h

dt

q k p k

µ

θ

=
=

∞ ∞

= =

= = + + + +

 
= + + + + 

∑ ∑
 (2.20) 

 
Similar to above, we have 4 9µ →  as either 0p →  or 0q → . Moreover, for p → ∞  and q → ∞ , 

4 3µ → . For other values of p and q, it is obvious that 43 9µ< <  and diminishing as p or q 

increase. 

 Table 1 and Figure 1 illustrates the flexibility of the z(p,q) distribution for values of p and q 

that will be used in simulations in later sections of this paper.  Note that the difference between p 

(or q) of 5 and 25 is relatively small, and that the kurtosis value of 3.04 for p = q = 25 is close to 

that of the normal distribution.  Figure 1 shows pdf’s for p = 0.3 and various values of q and allows 

a visual comparison with the standard normal pdf.  For p = q = 0.3, the distribution is symmetric 

but substantially more peaked.  Increasing q yields left-skewness; if p were increased instead of q 

(not shown), the densities would skew in the opposite direction.  Moreover, a z(5,5) density (not 

shown) already looks very similar to the standard normal one. 

 

2.3 The Normal Distribution as a Limiting Case 

This section proves that the distribution of z approaches the standard normal distribution as 

p and q approach ∞. First, consider (0)nh  for p aq=  and q → ∞ . 

 0 0
/ 2

2 2
0 0

1 1( 1)
( ) ( )(0) ( 1)!
1 1

( ) ( )

n
n n

k k
n n

k k

k aq k qh n

k aq k q

∞ ∞

= =

∞ ∞

= =

− +
+ += −

 
+ + + 

∑ ∑

∑ ∑
 (2.21) 
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which, by (2.18), may be rewritten as: 

 

( ) ( )
( ) ( )( )

1 1

, ,
/ 21 1

, 2 ,2

( 1) ( 1)
, ,

1 ( /2)
/ 21 1

,2 ,2

1 1
( 1)

( 1) ( 1)
(0) ( 1)!

( 1) 1
( 2)!

1

n
n n

aq n q n
n n

aq q

n n
a q n q nn

n
n

aq q

n aq n q
h n

aq q

a
q q

n q

a
q q

α α

α α

α α

α α

− −

− −

− − − −

−

− −

− +
− − − −

= −
− + −

   
− − + −   

   = −
    
 − + −        

 (2.22) 

 
Thus, for n > 2 and q → ∞ , we have (0) 0nh → .  

Second, since the moment generating function ( )M t  may be written as ( ) ( ( ))M t H h t= , a 

Taylor expansion of M around 0t =  is given by 

 
0

1
( ) (0)

!
n

n
n

M t M t
n

∞

=

= ∑  (2.23) 

 
where (Gradshteyn and Ryzhik, 1980:19) 

 
1 2

1 2

1 2

, ,..., 1 2
0

!
(0) ...

! !,..., ! 1! 2! !

k

k

ii im
k

n m
i i i k

t
hn d F h h

M
i i i dh k =

    =      
     

∑  (2.24) 

 
where 1 2 ... km i i i= + + +  and 1 22 ... kn i i ki= + + + . We have 1 0h = , 2 1h = , and, for p aq=  

and q → ∞ , 0nh →  for 3n ≥ . Thus, many terms disappear from (2.24). The only remaining terms 

contain 2
2( /2!) ih  with 22i n=  and 2 1h = . This means that 

 
/ 2! 1

(0)
( /2)! 2

n

n

n
M

n
 →  
 

as p aq=  and q → ∞  (2.25) 

 
when n is even and (0) 0nM =  for odd values of n. Thus, 
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2

2
2

0 0

2

0

2

0

/ 2

1 1
( )

! (2 )!

1 (2 )! 1
( )

(2 )! ! 2

1 1
! 2

n n
n n

n n

n
n

n

n

n

t

M t M t M t
n n

n
t

n n

t
n

e

∞ ∞

= =

∞

=

∞

=

= =

 =  
 

 =  
 

=

∑ ∑

∑

∑

 (2.26) 

 
which is the moment generating function of the standard normal distribution. 

2.4 The Cumulative Distribution Function of the Transformed Beta Distribution 

To employ the transformed beta distribution in limited dependent variable applications, it is 

imperative to have an accurate approximation of the cumulative distribution function (cdf). Let F 

denote the cdf of z, and let G be the cdf of a beta-distributed random variable y, as in equation (2.1). 

Then: 

 
0

( ) ( ) ( ) ( )
Z Y

F Z f z dz g y dy G Y
−∞

= = =∫ ∫  (2.27) 

 
where 

 
( )

1
1 Z

Y
e θ τ− +

=
+

 

 
An numerical approximation algorithm of G(Y) is found in Spanier and Oldham (1987, Ch. 

58).4  Write G(Y) as the ratio of the incomplete beta function B(p,q;Y) and the complete beta 

function B(p,q). Define 0 0f = , 0 (1 ) /p qt Y Y p= − , 1 1j j jf f t− −= + , and 

1 ( 1)/( )j jt t Y p q j p j−= + + − + , where j = 1, 2, .... Compute jf  and jt  iteratively until 

2 8( 1) / (1 ) 10j jt Y q f j Y − − − <  ; refer to this value of j as J. The approximate solution is then 

                                                 
4 Johnson, Kotz, and Balakrishnan (1995, section 25.6.1) present several other approximations. There is always a desire 
for lower computational burden and greater speed, but faster algorithms may not be as accurate generally.  Some do not 
work for values of p or q between 0 and 1. 
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found as ( , ; ) [1 ( 1) / (1 )]/(1 )J JB p q Y f t q Y J Y Y= + + − − − . Spanier and Oldham note that this 

solution does not work as well for values of Y near 1. For that reason, this algorithm should be used 

for 0.7Y < , say. If 0.7Y ≥ , we may write ( , ; ) ( , ) ( , ,1 )B p q Y B p q B q p Y= − −  and evaluate 

B(q,p;1−Y) with the algorithm above. 

If q is an integer and p is any positive real number, an exact solution of G(Y) is given by: 

 ( )
1

1

1

1
( ) ; , 1

q
p q

r

G Y g Y p r q r Y
p q

−
+ −

=

 
= + + − + +  

∑  (2.28) 

 
A similar formula exists when p is an integer and q is any positive real number. Equation (2.28) is 

useful to gauge the precision of the algorithm above. 

 This study uses the function that is built into Gauss 3.2.  A check of Gauss’s function by 

means of the Spanier and Oldham algorithm with a stoppage criterion of 10−8 over a wide range of 

values of p, q, and Y revealed showed for the most part virtual correspondence: (1) the largest 

absolute difference between the two results was no larger than 10−8; (2) the proportional difference 

in G was no larger than 10−3; and (3) the largest proportional difference in 1−G equaled 2.  When 

the stoppage criterion on the Spanier and Oldham algorithm was lowered to 10−12, the differences 

diminished to 10−10, 10−6, and 0.7 respectively.  The only worrisome inaccuracy is measured with 

regard to the proportional difference in 1−G, which occurs in extremely skewed beta distributions 

(p = 0.2, q = 25) when both routine compute G(Y) in the neighborhood of 1−10−11 and one 

algorithm approaches 1 faster than another.  The fact that the outcomes of the Spanier and Oldham 

algorithm move closer to the Gauss values when the stoppage criterion is tightened is reassuring of 

the accuracy of the Gauss function.  Nevertheless, it is necessary to pay attention to these issues, 

because numerical optimization of log-likelihood functions is sensitive to numerical inaccuracies in 

the underlying function routines. 



 

 

11

 

2.5 Summary and Discussion 

The family of transformed beta distributions depends on two parameters, p and q. This 

family contains the logit distribution as a special case, namely for p = q =1. The standard normal 

distribution is a limiting case when both p and q approach ∞. The distribution allows skewness 

values between −2 and 2, and kurtosis values ranging from 3 to 9.5 Thus, it has considerable 

flexibility that one may wish to exploit in estimating econometric models. 

The transformed beta distribution has a history in the statistics literature.  It first appeared in 

work by Fisher (1921, 1935) under the name of a z distribution.  It was, in essence, an 

unstandardized transformed beta distribution where the mean and spread were inherent functions of 

p and q. It was Prentice (1975) who introduced a location and scale parameter to make it a more 

general density that is suitable for density fitting and regression analysis.  There is a difference 

between his notation (which appears in Barndorff-Nielsen, Kent and Srrensen (1982) and 

McDonald and Xu (1995) as well) and the exposition in Section 2.1: the ‘parameters’ τ and θ are 

functions of p and q and serve to fix location and spread at 0 and 1, rather than to generalize it.  

Consequently, the parameters of a regression model (intercept, slope, and standard deviation of the 

disturbance) are not affected by p and q; they are, in a sense, orthogonal to p and q and therefore 

more easily estimated. 

The transformed beta distribution is more than a mere data fitting tool.  Barndorff-Nielsen, 

Kent and Srrensen (1982) point out that it is a “normal variance-mean mixture.”  More specifically, 

let η be a random variable with a probability distribution G
)

 defined for η ≥ 0.  z is called a normal 

variance-mean mixture with mixing distribution G
)

 if, given η, z is distributed 1 2 3( , )N µ µ η µ η+ , 

                                                 
5 Another family that allows skewness and kurtosis is the Gram-Charlier density (e.g., Ord, 1972, Ch. 2; Kendall and 
Stuart, 1977, Ch. 6).  The range of skewness and kurtosis is not as large, and the additional parameters are subject to a 
nonlinear parameter restriction in order to ensure that the density is globally nonnegative (Barton and Dennis, 1952). 
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where 1 2 3,  and µ µ µ  are constants with 3 0µ > .  The transformed beta distribution is therefore a 

mixture of normal distributions with a specific mixing distribution.  For 2 0µ = , the unconditional 

distribution of z is symmetric, and it becomes left-skewed (right-skewed) if 2 0 ( 0)µ < > .  This 

implies that the disturbance of a regression model can be a draw from one of various normal 

distributions, each with their own location and spread: for some sample members there may be 

more underlying factors than for other members.  The overall mix may not be normal and may 

indeed be skewed.  Together with the required specification of G
)

 (which itself contains two 

parameters), 1 2 3,  and µ µ µ  create a transformed beta distribution with a general mean and standard 

deviation.  For future research, this suggests an avenue to generalize disturbance distributions: mix 

normals with convenient mixing distributions G
)

. 

 

3. A class of limited dependent variable models 

3.1 The Betit Model 
 

This section applies the transformed beta distribution to limited dependent variable models.  

These models center around an index function 

 *
i i iY X uβ′= +  (3.1) 

The dichotomous outcome variable Y relates to *
iY  as follows: 

 
*

*

1     iff     0, i.e., 

0     iff     0, i.e., 

i i i i

i i i

Y Y u X

Y u X

β

β

′= ≥ ≥ −

′= < < −
 (3.2) 

Define [ ]Prob 1P Y= = .  For a sample of n observations, the loglikelihood function may then be 

written as: 
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 { }
1

ln ln (1 )ln(1 )
n

i i i i
i

L Y P Y P
=

= + − −∑  (3.3) 

The common approach is to assume that iu  has a standard normal or a logit distribution.  

This generates the familiar probit and logit models, respectively.  This paper proposes a z(p,q) 

distribution, yielding a model that, for obvious reasons, we shall name betit.  This betit model nests 

the probit and logit models through the parameters p and q.  Thus, iP  is written as: 

 ( ) ( ) ( ), ; , ;1
1 Prob 1 1

( , ) ( , )
i i

i i i i

B p q Z B q p Z
P u X F X

B p q B p q
β β

− ′ ′= − < − = − − = − =  
 (3.4) 

where ( ), ; iB p q Z  is the incomplete Beta function with argument 

 
( )

1

1 i
i X

Z
e τ θ β′− −

=
+

 

For p = q = 1, this simplifies to the standardized logit model.  When p = q = ∞, the probit model 

results. 

The betit model has already been suggested as a generalization to probit and logit by 

Prentice (1976) and is mentioned without further discussion by Amemiya (1981:1487).  There has 

not been any application of the model, likely because of its computational complexity which, at the 

time, still was a formidable barrier.  Prentice also designs score tests for probit and logit models.  

For probit this test is complicated by the behavior of the loglikelihood function when p and q go to 

∞.  Since p and q may be estimated by maximum likelihood, standard tests can be used for 

hypothesized values on +¡  but less than infinite.  For large values of p and q, say at 10 or 20, the 

difference between z(p,q) and the standard normal distribution becomes minor; indeed, likelihood 

function values are very similar unless samples are extremely large.  Thus, a test of normality could 

in principle be done by a comparison of an estimated ( )ˆ ˆbetit ,p q  model with betit(10,10) or 
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betit(20,20).  Because it matters so little, we shall test by means of likelihood ratio statistics that 

compare ( )ˆ ˆbetit ,p q  with betit(∞,∞).6 

3.2 Why Another Dichotomous Choice Model? 
 

Is there actually a need for another dichotomous choice model?  The answer to this question 

is found in the fact that the objective of dichotomous choice models is to quantify the relationship 

between explanatory variables X and the dichotomous variable Y.  The relationship is described by 

the expression [ ] ( )Prob 1 1Y F X β′= = − −  where F is the cdf of the distribution assigned to the 

disturbance term of the model.  Thus, the distributional assumption plays a role in determining how 

X influences the likelihood of a “success” in the form of Y = 1.  A more flexible distribution enables 

one to more accurately describe this relationship. 

Breaking loose from the restrictions imposed by the distributional assumption is indeed the 

objective of semiparametric dichotomous choice models such as Klein and Spady (1993) or 

Horowitz (1998).  The disadvantage of the semiparametric model is their generally slower rate of 

convergence, their computational burden, and the difficulty presented when some of the 

explanatory variables are dichotomous.  In contrast, the betit model shares the faster ( 1 /2n ) rate of 

convergence of probit and logit, is easy to compute, and handles any type of explanatory variables. 

The difference with logit and probit models is illustrated in Figure 2, which, along with the 

normal cdf curve, draws z(0.3,q) curves for q = 0.3, 1, 5 and 25.  At the various points along the 

horizontal ( )X β′  axis, the marginal impact on Y clearly differs.  Considering that the marginal 

impact can be computed as 

                                                 
6 In the vast majority of the scenarios represented in Tables 2 and 3 below, the log-likelihood values of betit(10,10) and 
betit(∞,∞) (i.e., probit) differ by less than 0.50.  The only exceptions occur when probit is convincingly rejected 
anyway and the sample is large. 
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[ ] ( )

Prob 1d Y
f X

dX
β β

=
′= −  (3.5) 

where f is the z(p,q) density defined in (2.10), the variation among the curves in Figure 1 indicates 

the potential gain from the betit(p,q) model. 

It should be noted that if the assumed distributional assumption misspecifies f, the estimate 

of β  will attempt to compensate, such that the marginal impact is, more or less on average across 

the sample, similar to that of equation (3.5).  Indeed, this is the rationale for misspecification bias.  

Table 2 quantifies this misspecification bias asymptotically for various scenarios.  The model is 

assumed to contain only one explanatory variable, and the data generating process uses 0 1β =  and 

1 1β = .  The scenarios differ according to the stated values of p and q and the range of the 

explanatory variable [ ],L UX X X∈ , which is selected such that [ ]Prob 1|Y X=  falls in specified 

intervals.  There are 500 equally spaced X values within each range. 

As one would suspect, the asymptotic bias in the logit and probit estimators of 1β  differs 

according to the data range.  Especially when successes are likely (or unlikely) throughout the 

sample is the bias large.  But once again, the relationship between X and Y is more subtle, 

depending on the cdf of the assigned distribution.  Thus, Table 2 also summarizes the difference of 

the estimated marginal logit and probit impacts and the true betit impact, expressed as a ratio for 

ease of comparison; the table reports the lowest value of this ratio, the highest value, and the 

median value.  Depending on the values of p and q and the data range, the marginal impact may be 

underestimated by as much as 40 percent or overestimated by more than 100 percent.  The median 

value of the ratio is mostly close to 1, again as one would expect, though in a few cases even the 

median impact is overestimated by 10 percent. 
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3.3 Small Sample Power 
 

In a large sample, the estimated probit or logit relationship between X and Y can be 

substantially biased when the true data generating process contains transformed-beta disturbances.  

The next question is whether the difference between the true betit and the hypothesized probit or 

logit model can be detected when the sample is small. 

The first order of business is to produce estimates of the parameters of the regression model, 

including ones for p and q.  From experimentation, it is clear that the log-likelihood function is not 

always globally concave.  In particular, the concentrated log-likelihood function lnL(p,q) 

sometimes shows locally convex shapes.  Furthermore, the likelihood function is virtually flat for 

larger values of p and q, and beta probabilities are difficult to compute in the tail for small p and/or 

q.  This creates convergence problems both when p or q is small and when p or q grows large.  

Because little is gained empirically by letting p and/or q rise without bounds (see Figure 1), these 

parameters are restricted a priori to the range [0.25, 10]. 

Table 3 examines the power of the betit model over probit and logit under the various data 

scenarios.  The underlying model contains a single explanatory variable X; the Prob[Y=1] range 

determines the length of the interval of X.  The individual observations of Xi are equally spread over 

the interval.  For each scenario, 100 random samples are created with the stated z(p,q) distribution.7  

The table indicates the proportion of these 100 runs that the probit or logit model is rejected at the 5 

percent level of significance.8 

Generally, the betit model is the easiest to distinguish when the data generating process uses 

highly skewed disturbances (the third line of each Prob[Y=1] group).  The greatest power is found 

                                                 
7 In practice, a random z(p,q) disturbance is computed as a transformation from a uniform random draw.  The 100 
simulated samples of z(p,q) disturbances for each scenario start with the same seed and therefore use the same uniform 
random values.  This ensures a degree of comparability across scenarios. 
8 Note that each of these power values are themselves outcomes of random variables.  This explains the occasional 
inconsistency where an increase in the sample size seems to lower the power of the likelihood ratio test. 
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when the probability of success varies over the full unit range, i.e., when the sample is balanced.  

When success is quite likely for all sample members (or, by symmetry, quite unlikely), or when 

success is not well defined for any subsample, the betit model has a capacity to differentiate only 

when the sample is moderately large and the distribution is sharply skewed. 

 

4. Applications 

To get a sense of how the betit model might modify outcomes of limited dependent 

variables models, let us turn now to a couple of illustrative examples with real rather than simulated 

data.  The first considers women’s labor force participation and uses data of a sample of married 

white women drawn from the Panel Study of Income Dynamics in 1975, as used by Mroz (1987) 

and made available through Berndt (1991).  Table 4.A defines the variables and their descriptive 

statistics.  Other Income is defined as household income minus the wife’s own earnings.  Other 

variables are self-explanatory. 

The probit and logit models achieve virtually identical maximized log-likelihood values.  

The betit model comes up with one that is statistically superior to both at the 10 percent level.  As it 

turns out, unrestricted estimation of p and q iterates toward a value of (p, q) = (0.68, 0.21) before 

stalling; restriction to the parameter space of 0.25 ≤ p, q ≤ 10 leads to a corner solution at 

ˆ 0.8357p =  and ˆ 0.25q = .  This suggests that the distribution of the disturbance is strongly peaked 

and mildly right-skewed.  As mentioned in Section 3, this impacts the relationship between the 

determining factors and the labor force participation outcome.  The difference between the probit 

and betit probability of labor force participation across women in the sample can be as high as 7 
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percentage points either way.9  Not reported in the table are two other specifications of the model.  

One adds the log of the woman’s wage (observed if working, imputed if not working).  This model 

yields ( ) ( )ˆ ˆ, 10,0.25p q = , which is significantly different from either logit or probit at the 1 percent 

significance level; it generates greatly probit and betit probabilities that differ by as much as 25 

percentage points both ways.10 Another specification contains the log of husband’s wage, nonwage 

income, and the imputed value of the log of the wife’s wage.  It converges to values of 

( ) ( )ˆ ˆ, 10,3.9p q =  and was not significantly different from logit or probit estimates.  

As a second illustration, Table 5 looks at sectoral employment choices in Tanzania.  The 

sample derives from the National Urban Mobility, Employment, and Income Survey of Tanzania 

(NUMEIST), conducted in 1971 (see Vijverberg and Zeager, 1994).  This survey collected a 

random sample of households in seven urban areas including the capital city of Dar es Salaam 

(Sabot 1979).  The education variables describe the schooling attainment as cumulative dummy 

variables; for parsimony, the limited dependent variables models assume a constant effect for the 

three highest levels.  Compared to probit and logit, the estimates of the betit model indicate a 

significant effect of marital status and residence in Dar es Salaam, and insignificant values for 

schooling in Standard 1-4 and religious orientation.  The likelihood function reaches its maximum 

at the imposed boundary value of ( ) ( )ˆ ˆ, 0.20,10p q = , indicating a sharply right-skewed and peaked 

disturbance distribution.11  The probit probability of public sector employment differs by as much 

as 15 percentage points from the betit probability.  However, the fit of the betit model is not 

                                                 
9 By comparison, the probit and logit probabilities are nearly identical: the probit and logit models are fully equivalent. 
10 One might make the argument that the rejection of the logit and probit models owes to an objectionable treatment of 
the wage variablebut this is the way labor force participation models used to be estimated at one time.  The point is 
that the betit model is capable of determining skewness and kurtosis in the disturbances, and that predicted probabilities 
can be greatly influenced. 
11 For this sample, the lower boundary of p = 0.2 did not appear to yield convergence problems, unlike other estimation 
runs made for this paper.  The estimated probability of public sector employment ranges from 0.0036 to 0.9439 and is 
therefore not as extreme. 
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statistically superior to probit or logit: the likelihood ratio test does not reach the 10 percent 

significance level.  In a more elaborate specification of the model, one that addresses the focus of 

the Vijverberg-Zeager paper,12 the probit model is rejected by the betit model, once again with 

( ) ( )ˆ ˆ, 0.20,10p q = , at the 6.5 percent significance level.  The probit probabilities deviate by up to 

±22 percentage points.  A scatterplot of the betit and probit probabilities (Figure 3) illustrates that 

the deviation between the probabilities contain systematic patterns that may impact the substantive 

outcome of the analysis. 

In closing, it is worth noting that, for both applications, the semiparametric models of Klein 

and Spady (1993) and Horowitz (1998) would not converge to meaningful solutions.  

Experimentation suggested that this likely owes to the large number of dichotomous explanatory 

variables in the model. 

 
 

5. Concluding Remarks 

This paper proposes a family of dichotomous choice models that constitute a generalization 

of probit and logit.  Its advantage is the greater flexibility of the distribution of the disturbance 

term.  The shape of this distribution impacts the relation between the dichotomous choice variable 

and its determinants. 

Prentice (1976) makes the point that it is important to estimate the shape of this distribution 

precisely in order to make accurate predictions of the probability of success outside the range of 

observation.  This is obviously valuable in the context of dose response functions, but similarly one 

                                                 
12 The sectoral choice equation is identical to specification 1 of Table 1 in Vijverberg and Zeager (1994).  It adds 
information on father’s occupation, migration status, whether the migrant still had land in the place of origin, the 
number of years since leaving the village and its square, and a number of interaction terms with migrant and land 
status. 



 

 

20

 

encounters policy questions in the social sciences that require answers to “what if” questions that 

would take some members of the target population outside the range observed in the sample. 

Even within the range of observation, one desires to get accurate estimates of the impact of 

determining factors on the dichotomous choice variable.  Assuming the wrong distribution leads to 

specification bias and incorrect perceptions about this impact.  The paper offers two examples 

where the probit probability of a particular choice being made differed by as much as 20 percentage 

points from the probability computed from the statistically preferred betit model. 

The betit model has one main drawback, a problem that has long been recognized in the 

context of comparing logit and probit models (Cox and Chambers, 1967).  The sample generally 

needs to be large in order to differentiate the various alternatives.  Here, “large” means a sample of, 

preferably, several thousands of observations.  Substantial skewness and peakedness is noticeable 

with fewer observations, provided the sample is more balanced and the probability of a success 

varies over the full unit range. 
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Table 1: Skewness and Kurtosis of the z(p,q) Distribution for Various Values of p and q 
 
 

 q 
p 0.3 1 5 25 
 Skewness 

0.3 0.00 -1.41 -1.71 -1.75 
1 1.41 0.00 -0.92 -1.10 
5 1.71 0.92 0.00 -0.35 

25 1.75 1.10 0.35 0.00 
     
 Kurtosis 

0.3 5.48 6.89 7.78 7.92 
1 6.89 4.2 4.87 5.29 
5 7.78 4.87 3.22 3.32 

25 7.92 5.29 3.32 3.04 
 



Table 2: Asymptotic Comparison of Logit, Probit, and Betit 
 
   logit  probit 

Scenario  asy.value ∆Plogit /∆Pbetit  asy.value ∆Pprobit /∆Pbetit 
p q  of β1 min max med  of β1 min max med 

Range of P[Y=1] = (0.01−0.99) 
0.3 0.3  1.023 0.815 1.178 1.029  1.023 0.599 1.422 1.098 
0.3 1  0.972 0.414 2.343 0.996  0.966 0.191 2.788 1.067 
0.3 5  0.915 0.435 1.867 0.952  0.901 0.222 2.123 1.008 
1 1  1.000 1.000 1.000 1.000  1.018 0.814 1.206 1.053 
1 5  0.968 0.611 1.662 0.963  0.983 0.352 1.904 1.013 
5 5  0.972 0.882 1.086 0.966  1.005 0.974 1.042 1.012 

            
Range of  P[Y=1] = (0.333−0.99) 

0.3 0.3  1.007 0.832 1.154 1.001  0.980 0.664 1.360 1.035 
0.3 1  1.430 0.791 1.438 1.065  1.500 0.869 1.415 1.078 
0.3 5  1.526 0.633 1.573 1.062  1.654 0.708 1.570 1.078 
1 1  1.000 1.000 1.000 1.000  1.002 0.835 1.189 1.022 
1 5  1.209 0.777 1.290 1.011  1.273 0.885 1.250 1.027 
5 5  0.978 0.889 1.085 0.987  1.002 0.977 1.040 1.006 

            
Range of P[Y=1] = (0.5−0.99) 

0.3 0.3  0.964 0.799 1.119 1.003  0.904 0.653 1.302 1.041 
0.3 1  1.605 0.852 1.435 1.030  1.604 0.934 1.269 1.044 
0.3 5  1.878 0.678 1.688 1.036  1.957 0.768 1.559 1.043 
1 1  1.000 1.000 1.000 1.000  0.964 0.843 1.178 1.026 
1 5  1.331 0.799 1.356 1.000  1.346 0.916 1.212 1.012 
5 5  1.007 0.892 1.118 0.987  0.994 0.968 1.039 1.006 

            
Range of P[Y=1] = (0.667−0.99) 

0.3 0.3  0.919 0.791 1.078 1.005  0.825 0.625 1.236 1.041 
0.3 1  1.759 0.907 1.320 1.008  1.645 0.965 1.087 1.027 
0.3 5  2.328 0.729 1.687 1.009  2.271 0.828 1.451 1.016 
1 1  1.000 1.000 1.000 1.000  0.914 0.804 1.158 1.029 
1 5  1.481 0.826 1.378 0.990  1.409 0.943 1.155 1.004 
5 5  1.051 0.901 1.164 0.986  0.982 0.957 1.038 1.006 

            
Range of P[Y=1] = (0.333−0.667) 

0.3 0.3  1.183 0.987 1.046 1.009  1.338 0.982 1.066 1.012 
0.3 1  1.096 0.814 1.198 1.009  1.239 0.826 1.225 1.012 
0.3 5  1.078 0.757 1.228 1.010  1.219 0.769 1.257 1.014 
1 1  1.000 1.000 1.000 1.000  1.131 0.995 1.020 1.003 
1 5  0.974 0.882 1.097 1.000  1.101 0.898 1.121 1.004 
5 5  0.906 0.984 1.004 0.997  1.025 0.999 1.004 1.001 

 



Table 3: Small-Sample Power of Betit Relative to Probit and Logit: Simulations  
 

   Power of betit at 5 percent significance level against: 
Scenario  N=500 N=1500 N=2500 

p q  probit logit probit logit probit logit 
Range of P[Y=1] = 0.01 - 0.99    

0.3 0.3  0.26 0.01 0.69 0.15 0.79 0.21 
0.3 1  0.90 0.76 1.00 0.99 1.00 1.00 
0.3 5  0.92 0.83 1.00 1.00 1.00 1.00 
1 1  0.04 0.00 0.24 0.03 0.30 0.07 
1 5  0.59 0.36 0.91 0.83 0.99 0.99 
5 5  0.02 0.01 0.06 0.03 0.03 0.14 

         
Range of P[Y=1] = 0.33 - 0.99    

0.3 0.3  0.17 0.00 0.53 0.09 0.67 0.08 
0.3 1  0.02 0.13 0.13 0.43 0.24 0.77 
0.3 5  0.22 0.42 0.70 0.94 0.96 1.00 
1 1  0.05 0.01 0.16 0.02 0.15 0.03 
1 5  0.01 0.11 0.06 0.40 0.23 0.73 
5 5  0.00 0.03 0.03 0.06 0.03 0.13 

         
Range of P[Y=1] = 0.50 - 0.99    

0.3 0.3  0.04 0.01 0.25 0.02 0.35 0.02 
0.3 1  0.00 0.05 0.02 0.16 0.04 0.29 
0.3 5  0.04 0.14 0.31 0.61 0.64 0.87 
1 1  0.03 0.02 0.06 0.01 0.12 0.02 
1 5  0.00 0.06 0.05 0.18 0.13 0.40 
5 5  0.00 0.04 0.02 0.08 0.02 0.13 

         
Range of P[Y=1] = 0.67 - 0.99    

0.3 0.3  0.00 0.00 0.03 0.00 0.06 0.00 
0.3 1  0.00 0.01 0.00 0.04 0.01 0.07 
0.3 5  0.00 0.03 0.05 0.23 0.15 0.50 
1 1  0.00 0.01 0.01 0.00 0.02 0.02 
1 5  0.00 0.00 0.00 0.08 0.03 0.20 
5 5  0.00 0.01 0.00 0.03 0.01 0.05 

         
Range of P[Y=1] = 0.33 - 0.67    

0.3 0.3  0.00 0.00 0.00 0.00 0.00 0.00 
0.3 1  0.00 0.00 0.00 0.00 0.01 0.01 
0.3 5  0.00 0.00 0.00 0.00 0.01 0.01 
1 1  0.00 0.00 0.00 0.00 0.00 0.00 
1 5  0.00 0.00 0.00 0.00 0.00 0.00 
5 5  0.00 0.00 0.00 0.00 0.00 0.00 



 Table 4: Application: Women’s Labor Force Participation 
 

A: Definition and Descriptive Statistics 
 
Variable Definition Mean Std.Dev.  Minimum Maximum 
LFP Labor force participation in 1975 0.57 0.50 0.00 1.00 
KL6 
 

Number of children in household under 6 
years of age 

0.24 
 

0.52 
 

0.00 
 

3.00 
 

K618 
 

Number of children in household 
between 6 and 18 years of age 

1.35 
 

1.32 
 

0.00 
 

8.00 
 

AGE Age (years) 42.54 8.07 30.00 60.00 
EDUC Schooling (years) 12.29 2.28 5.00 17.00 
URATE 
 

Unemployment rate in the county of 
residence 

8.62 
 

3.11 
 

3.00 
 

14.00 
 

SMSA Dummy, =1 if person lives in an SMSA 0.64 0.48 0.00 1.00 
OTHINC Other Household Income ($000s) 20.13 11.63 -0.03 96.00 
The number of observations is 753.   
Source: Panel Study of Income Dynamics: Mroz (1987), Berndt (1991) 
 
 

B: Estimates of Probit, Logit, and Betit Models 
 
 Probit Logit (a) Betit 
 Estimate t-stat Estimate t-stat Estimate t-stat 
CONST 0.4802 1.00 0.4474 1.01 0.5430 1.59 
KL6 -0.8909 -7.78 -0.8167 -7.48 -0.7061 -6.39 
K618 -0.0364 -0.90 -0.0352 -0.94 -0.0390 -1.29 
AGE -0.0342 -4.47 -0.0314 -4.44 -0.0255 -4.03 
EDUC 0.1566 6.50 0.1430 6.32 0.1210 5.84 
URATE -0.0109 -0.69 -0.0098 -0.68 -0.0094 -0.83 
SMSA 0.0246 0.23 0.0210 0.22 0.0390 0.50 
OTHINC -0.0210 -4.49 -0.0193 -4.34 -0.0183 -4.36 
p     0.8357 1.01 
q     0.2500 (b) 
Log-Likelihood -453.982 -453.949 -451.54 
χ2 statistic (c) 4.884 4.819  
 
Notes:  
(a) The logit model is standardized by the factor π/√3.  Thus the logit parameters are comparable to 

probit and betit ones. 
(b) q is restricted to these parameter values on the border of the defined parameter space, which is 

the location of the maximum of the log-likelihood function over the space. 
(c) The χ2 statistic reports the likelihood ratio test of the given model against the betit model.  The 

5-percent significant value equals 5.99; the 10-percent significance value is 4.61. 
 



Table 5: Application: Employment in the Public Sector in Tanzania 
 

A: Definition and Descriptive Statistics 
Variable Definition Mean Std. Dev Minimum Maximum 
SECTOR =1 if employed in the public sector 0.605 0.489 0 1 
EDST1 Education: =1 if Standards 1-4 or more 0.826 0.379 0 1 
EDST5 Education: =1 if Standards 5-8 or more 0.608 0.488 0 1 
EDFM1 Education: =1 if Forms I-IV or more 0.203 0.402 0 1 
EDFM5 Education: =1 if Forms V-VI or more 0.024 0.153 0 1 
EDUNI Education: =1 if university 0.011 0.105 0 1 
AGE Age in years 29.614 9.701 14 78 
SEX =1 if female 0.129 0.335 0 1 
MARRIED =1 if married 0.574 0.495 0 1 
RELIG =1 if Christian religion 0.463 0.499 0 1 
SKILLED =1 if skilled occupation 0.644 0.479 0 1 
CITIZEN =1 if citizen of Tanzania 0.961 0.195 0 1 
SALAAM =1 if in Dar es Salaam 0.661 0.473 0 1 
The number of observations is 1721.   
Source: National Urban Mobility, Employment, and Income Survey of Tanzania (NUMEIST): 
Vijverberg and Zeager (1994) 
 

B: Estimates of Probit, Logit, and Betit Models 
 Probit Logit (a) Betit 
parameter estimate t-stat estimate t-stat estimate t-stat 
const -2.1654 -5.57 -1.9606 -5.51 -2.1086 -7.33 
EDST1 -0.2376 -2.32 -0.2096 -2.29 -0.1143 -1.52 
EDST5 0.4694 5.45 0.4214 5.42 0.3914 5.66 
EDFMU (d) 0.3940 5.01 0.3704 4.82 0.4704 4.59 
AGE 0.0499 2.56 0.0455 2.59 0.0485 3.21 
AGESQ -0.0467 -1.80 -0.0426 -1.82 -0.0465 -2.27 
SEX -0.0018 -0.02 0.0030 0.03 -0.0011 -0.01 
MARRIED 0.0858 1.08 0.0813 1.13 0.1100 1.66 
RELIG 0.1555 2.26 0.1331 2.12 0.0722 1.19 
SKILLED 0.3864 5.35 0.3416 5.26 0.3021 4.84 
CITIZEN 0.8293 4.82 0.7469 4.64 0.5624 5.05 
SALAAM 0.1289 1.87 0.1166 1.86 0.1297 2.25 
p     0.2000 (b) 
q     10.0000 (b) 
Log-Likelihood -1047.38 -1047.67 -1046.50 
χ2 statistic (c) 1.77 2.36   
Notes:  
(a) The logit model is standardized by the factor π/√3.  Thus the logit parameters are comparable to 

probit and betit ones. 
(b) p and q is restricted to these parameter values on the border of the defined parameter space, 

which is the location of the maximum of the log-likelihood function over the space. 
(c) The χ2 statistic reports the likelihood ratio test of the given model against the betit model.  The 

5-percent significant value equals 5.99; the 10-percent significance value is 4.61. 
(d) EDFMU = EDFM1 + EDFM2 + EDUNI. 



 
 
 
 
 

Figure 1: Several z(p,q) density functions, compared to the standard normal pdf 
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Figure 2: The relationship between X′β  and Y, modeled with  
z(p,q) and normal distributions 
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Figure 3: Probability of Employment in the Public Sector, Tanzania 1971: 
A Comparison of Probit and Betit Probabilities 
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