*PUCL JP Memorial Lectures have been delivered since 1981. Enquiries on the special edition collection of all JP Memorial Lectures should be addressed to: PUCL, 81 Sahayoga Apartments, Mayur Vihar I, Delhi-110 091. Contribution Rs.70/- per copy plus postage.

Twentieth JP Memorial Lecture, 2000

Nuclearisation, Human Rights, and Ethics

Amulya K.N. Reddy

I deem it a privilege and honour to be invited to pay this tribute to Shri Jaya Prakash Narayan, one of the makers of the post independence India. The organizers may not have realized that this is a personal tribute to JP because his essay "Why Socialism" deeply influenced me when I was 18 years old. What they would never have thought of this that I had privilege of knowing JP at close quarters in a unique capacity - I was the driver of the conveyance in Bangalore, a little Vauxhall belonging to me uncle C G K Reddy. It is fitting therefore that I also pay a tribute to CGK for inspiring me with a concern for society and introducing me to JP and socialism. The focus of my tribute to JP is nuclearisation, human rights, and ethics. Nuclear weapons are unique - their impacts are primarily on innocent civilian non combatants particularly women and children; they are intrinsically indiscriminate; they are largely uncontrollable; they are instruments of mass murder on a scale unparalleled in human history.

Nuclear weapons have security, economic and political implications. In the ultimate analysis, however, the issue of nuclear weapons is an ethical question. It is question or right and wrong, good and evil, morality. Even though it is not the fashion for scientists to discuss moral questions, there is growing interest in India in these morality issues as shown for instance by recent contributions, to the pages of the journal Current Science.

After Pokhran II, there was a distressingly and disappointingly small minority of Indian scientists who spoke up against the nuclear testes. Though I was one of them, my attitude intensified after a visit the Poland in September 1999. There a World Energy Assessment meeting that I attended in Cracow in Poland enabled me to visit the infamous Nazi concentration campus of Auschwitz and Birkenau that are now preserved as museums.

During World War, II , about 15 lakhs of innocent victims from all over Nazi - occupied Europe , over whelmingly Jews, either went directly to their death in the gas chambers and crematoria at Auschwitz and Birkenau, or indirectly via the campus were they were held prisoners until they were too weak to labour. The tour of the campus left me with a completely unexpected feeling. The scale of human extermination was so enormous that I had to remind myself, particularly because there campus have been unpopulated since 1944, that there used to be human beings there. Human belongings - toothbrushes, shoes and suit cases - were pilled from floor to ceiling in huge rooms, a separate room for each item, but the aggregate was more reminiscent of factory inputs. Even the room full of human hair looked like raw material for an industry, in the Auschwitz case, the manufacture of tailor's lining cloth.

If Auschwitz was unbelievable, its neighbour Birkenau located 3 kms away, beggared the imagination. Birkenau was spread over 175 hectors with 300 buildings each capable of housing 1000 inmates. Birkenau was a scale up from the pilot plant demonstration at Auschwitz with a peak of 20,000 prisoners to full scale commercialization of mass murder technology at Birkenau with 100,000 prisoners in August 1944.

The powerful impression that persisted was of detailed engineering resulting in "... the immense technological complex created... for the purpose of killing human beings." The meticulous organisation and rigorous management were characteristic of mega industries, "gigantic and horrific factories of death." The main gate of Auschwitz displayed the inscription "Arbeit macht frei" (Work brings freedom). Perhaps a more apt announcement would have been "Technology completely decoupled from values."

As the scale of killing increases, the technology often (but not always) becomes more and more sophisticated - from knives to guns to machine guns to bombs to gas chambers and crematoria to atomic bombs. Also, with increasing scale, not only does the distance from victims become greater, but also the complexion becomes more and more technical. Burial is sufficient fore one body but for hundreds or thousands of bodies, the thinking id in terms of "throughput", "air/fuel ratios" and burning capacity".

In Auschwitz , it is obvious that nothing happened spontaneously. Everything was deliberately designed and planned. The poison Cyclone B was developed by the Nobel Prize winner, Fritz Haber. One of Germany's top chemical industries, IG Farben, produced the poison for exterminating people in the gas chambers. Careful experiments were done to determine the time it would take for a person to be poisoned. An engineering firm designed the crematoria furnaces to process 350 bodies per day in Auschwitz I. So, there must have been engineers preoccupied with the technical problems. Perhaps, like Oppenheimer talking about the atomic bomb, some even thought that the problem was "technically sweet". Or, like the Department of Atomic Energy scientist at the Bangalore Kaiga debate in 1989 who said: "Hiroshima provided as with the fortunate opportunity to study radiation effects!"

Once the problem was defined as eliminating hundreds and thousands of people per day, the Auschwitz solution was inevitable. But, who defined the problem and promulgated there order? By and large, it is political decision - makers that defined the problem. There was a conference at Wannsee, a suburb of Berlin, on January 20, 1942, at which the Nazi leadership less than two hours (before lunch!) on what became known as the "final solution" to exterminate the Jews. Ethnic superiority, racial/ religious hatreds and fundamentalist views are well known bases foe decisions with far reaching destructive impacts on human beings.

Why was this definition of the problem so widely accepted? There could be several reasons. The population had been inoculated against moral judgements so that there is a pervasive moral indifference. The informed were silenced and the articulated dissidents became the first input to the campus. The media and journals were not allowed to reveal the truth. As a result, many citizens genuinely claimed ignorance as an excuse.

I must add an important footnote here. The New York Times Magazine of Sunday February 13, 2000, has an article entitled: "The Good Germans" by Peter Schneider which shows that plenty of Germans protected Jews in the midst of Nazi terror, thus challenging "the theory mass guilt and deepening the culpability of the collaborates."

The most serious "explanation" for the wide spread acceptance of the Nazi definition of the problems is the plea of duty and the obligation to carry out orders. The reader may recall the movie "judgement at Nuremberg" with Spencer Tracy as true judge trying the Nazi judges for furthering the extermination of Jews. These judges defined themselves by pleading that they were just carrying out orders. The judgement delivered at Nuremberg was unambiguous - a human being has to take full responsibility for the consequences of his /her actions and that the excuse of obeying orders is inadmissible.

Apart form the above factors that operate in the case of officials and technical personnel, there is the additional device of taking a top down macro view with arguments of national security, geopolitical compulsions, deterrence, etc, . In such a macro view , numbers and statistics replace human beings. New proxy words dominate the discussions - "burning capacity" replaces "the number of corpses burnt", "kilotons yield" replaces "kilodeaths", etc.

Functionaries, however, cannot avoid contact with the prisoners and victims to keep the system going. What is over whelming and astounding in Auschwitz and Birkenau is the unbelievable cold bloodedness of the operation. It appears that the guards treated inmates inhumanly because they believed that the victims were sub human things rather than people. Once such a belief is propagated and accepted, anything goes - as in the growing number of examples of ethnic cleansing and genocide (native Americans, Hindus and Muslims in Partition, Rwanda, Bosnia, Kosovo, and East Timor).

Walking through the scene of genocide in Auschwitz , I began to think of historical parallels. In particular, I wondered whether there was a difference between the Nazi concentration camps and the development of the atomic bombs at Los Alamos, the test at Alamogordo and the bombing of Hiroshima and Nagasaki resulting in the virtually instantaneous annihilation of hundreds of thousands of civilians. Of course, the Allies in the World War II were not driven by the racism of the Nazis, and they were not pursuing a final solution of extermination of any particular religious group. But with regard to the scale of killing, the recruitment of capable minds, the harnessing of science and technology (some perhaps hoping that the weapons would never be used and others even opposing the use of the weapons after they were developed), the extent of organisation, the report of the effective management, and the choice of the targets to maximise annihilation of Japanese civilians, the Manhattan project and its follow-up were like the concentration camps, the fact, even more horrendous in their impact.

Walking inside the barbed-wire fences of Auschwitz, I wondered about the implications for India. Since May 1998, the country has witnessed the scientist-politician nexus underlying the nuclear tests at Pokhran, the use of national security arguments to advance party agendas and self serving jingoism of the scientists. Of even greater importance has been the silence of its journals with a few notable exceptions, the obfuscation of ugly reality and the virtual absence of intellectual dissent. Each of these phenomena deserves greater scrutiny.

After an initial silence on the subject (as if it never happened). The journal *Current Science* dealt with the testes in an interesting way. It discriminated between obviously correlated concepts by publishing kiloton yields and suppressing kilodeath estimates. It publicized the official/ government version of the "kilotons yield" of the test bombs but rejected estimates of the hundreds of thousands of innocent non combatants who would be killed if even a primitive atomic bomb were exploded on Mumbai/Karachi. This is a glaring example of the unpleasantness of the discussing the mass annihilations of the human beings being circumvented by the alerting the vocabulary of their discourse. Thus considerations of the kilodeaths that would result from nuclear explosions are evaded by focusing of discussions of the kilotons yields, a seemingly innocuous term.

Further, with regard to the official/government estimates of the yield of the Pokhran II tests, what not worthy is not that they were published, but that counter views were not pro actively elicited and revealed. In doing so, Current Science behaved like an official mouthpiece of the establishment, rather than as an independent Nature like forum facilitating discourse and discussion and encouraging scientists to express t an opinion that is contrary to what is perceived as an accepted establishment view. Interestingly, though Current science abdicated its responsibility of encouraging a scientific discussion of yields, Frontline which is general magazine initiated such a debate.

Viewing the Indian nuclear program through the Holocaust Lens raises other questions. Are the institutions on the Indian sub continent necessarily more robust and moral than those in the Germany of the 1930s and 1940s.? Are Indian politicians and parties less prone to exploit religious animosities? Are Indian scientists and engineers less eager to get political support for their next ego trip or power play (e.g., neutron bombs because they kill but don't destroy.) Once the nuclear tripped miseries are deployed, are their guarantees against "some crazy fool doing some crazy thing."? It is certain that Pokhran will not lead as inevitably to Lahore and /or Chagai to Mumbai as Alamogordo led to Hiroshima?

The nuclear tests exposed the internal condition of Indian science. Faced with a complexity of issues raised buy the tests - issues of (internal and external) security, trade and economics, politics, ethics, national traditions - it would have bee natural for the body intelligent and creative scientists to develop the spectrum of the views. Instead, the virtually unanimous euphoria was astonishing. And, the silence of the present and past leaders of science, their academies and their journals was deafening . Since, it is statically unlikely that almost all the whole body of scientists had independently arrived at a single view, one has to probe deeper to find an explanation.

Free India started with the Nehruvian idea of science as an essential accoutrements of a modern society. Today, the nuclear tests have shown the determination of the rules to make Indian science a servant of the State and its internal and external political ambitions. The idea that science is the people's Astra (weapon) against poverty is being jettisoned. The Jai Vigyan Pronouncement symbolizes this attempt by the government to co-opt scientists.

But this is not an unrequited one sided desire to embrace. In turn, scientists have been wooing the ruling establishment with a desperate desire to be in the corridors of power. When the government kept them at an arm's length - as seems to have

been the case in the Narasimha Rao regime - scientists felt quite bitter and rejected. They even considered that period as the nadir of post - independence Indian Science.

In contrast, the giants of the Indian Science, in particular Raman and Saha, considered their independence from government on the years immediately after 1947 to be a matter of pride. But, power was irresistible to the lesser scientists who followed. And the only way this desire could be fulfilled was to woo government through its scientific ministries and their secretaries. Scientific academies courted secretaries of scientific ministries to be their presidents and office bearers. There was no regret that, in the process, the academies lost their independence. Or, that their voices could be distinguished from those of government. This lacuna is in a country where there are very few other institutions that are independent enough to come up with perspectives different from the government. In the West, the universities provide independent policy studies, but such independence is rare in India.

Thus scientists wanted to be , and became, a pressure group. All this has became clear after the tests when a former Prime Minister revealed how the nuclear scientists lobbied the government to give them a chance to prove their capability. The scientists had not done a comprehensive cost benefit analysis of the tests and their fall out. They did not reveal a national perspective. Despite, this they persued a narrow departmental, if not personnel, agenda, perhaps emulating their political masters.

An understanding of science society interactions in India has to take in to account, on the one hand,, the existence of a dual society, and on the other hand, its strong interaction with the industrialized countries. The coupling with the industrialized countries leads to the dominants of foreign collaborating industry based on the import of the technology, and the dual character of the Indian society results in an overwhelmingly elitist thrust of indigenous technology. Further, even these indigenous technological effort consists almost wholly of the imitation and adaptation of foreign technology, rather of innovation .

This almost complete decoupling of science and technology from each other has a profound impact on science in India and produces its first major abnormality. Because of the preponderance of technology, imports of the imitative character of indigenous technology the initial part of the innovation chain (consisting of research, design and development , and engineering - for - manufacturing) hardly exists in the country. As a result , its scientific system is not subject to the pressure of basic problems emerging from technology. And, without this pressure from technology, indigenous science is deprived of a powerful driving source. The vitality of science in a society depends upon the challenges thrown up the innovation chain leading to technology as well as upon its internal momentum arising from the backlog unresolved problems.

If Indian science is to flourish, it must depend solely upon its internal momentum, which is the product of the "mass" of scientists and the "velocity" or pace of scientific research. The pace or tempo of research activity depends upon the existence and maintenance of an atmosphere of excitement, which in turn requires a conviction of being " hot on the trail " of important discoveries. Such an atmosphere is fascilitated by rapid communication between scientists through personnel contracts, seminars, symposia and conferences and through well referred journals that ensure quick publication.

The pace of research is usually set by outstanding scientists who attract a following. The point is that scientists tend "to hunt in packs" behind leaders.

The "mass" of scientists depends upon the size of the scientific body, but not merely upon the number of scientists. What is required is a Community of interacting scientists with the well established traditions of a peer system. Scientific peers are crucial for discussions, brain storming and testing it ideas, for acquiring different ways of looking at a problem, for enhancing the quality of seminars, symposia and conferences, for rigorous assessment and constructive criticism of work, for help in improving its quality, for weeding pot defective work, for a process of recognition that is appreciated , and so on. In short, without an environment of an actively interacting scientific community, the can not be the natural selection of scientific ideas and data that alone will ensure that the fittest theories and experiments survive.

Natural selection of ideas implies competition and diversity. It can not arise if there is a monoculture of views . Truth can not emerge if there is an absence and/ or exclusion of dissent, and certainly not triumph, if dissenters are branded anti - scientific and anti - national. It is against this background that one notes with regret that in recent decades that they have not been major scientific controversies within the Indian scientific establishment. Bitter enmities between some leaders of Indian science are well known, but they are only mere conflicts on scientific issues. They only controversies that have arisen - the Bhopal gas disaster, the Sardar Sarovar project, nuclear power, etc, - have arisen from scientists who are outside the establishment or are treated as renegades and ignored.

The standard way of avoiding genuine controversy and peer review is to exclude unorthodox views from seminars, committees journals, and other forums (including the peer reviewing process). So, one finds internationally acclaimed experts not being invited to meetings on their subjects because they hold "unacceptable " views they are not in he hierarchy. The dialectic of truth is frustrated even in so called institutes of "advanced" studies. Of course, all this distortion of scientific tradition can not survive if there were transparent democratic functioning. That is why there is a striking lack of transparency, undemocratic functioning and manipulation of peer review.

Underlying all this violation of the scientific tradition and its codes of behaviour is the fact "he who pays the piper calls the tune." Government and quasi government sources are responsible for the overwhelming share of science funding so that scientific activity depends strongly on this funding, and almost all scientists are on the government pay roll or perk roll. There are also a number of cash carrying prizes and awards that act as an further inducements to conform, rather than dissent. No wonder there was a stampede of scientists to applaud the nuclear tests and prove their patriotism as perceived by the establishment, Fortunately, in spite of all this pressure for conformity, there were some scientists who dissented and their numbers grew with the warning of the initial euphoria.

With regard to the directions of Indian science, discussions on must start with the country's poverty - for, this is its defining characteristic and fundamental reality. In 1951, India's poor numbered 164 millions; in 1993 - '94, the number had increased to 312 millions, that is, double the number people at independence who could not meet their daily subsistence requirements. Between 1950 - 51 and 1993 - 94, the

population below the poverty line declined by less than 1% per year. One in three Indians go to bed hungry. Life expectancy is about 60. Half the Indian population can not read or write. The Human Poverty index (HPI) is about 37% -- this index is a composite of Longevity (19. 4% of the population expected to die before the age of 40), knowledge (48.8% are illiterate), and standard of living (19% are without access of safe drinking water, 15% without access to health services and 53% of the children are malnourished/underweight). India belongs well and truly to the club of poorest nations. The country can move out of this cursed club only through sustainable development, not through nuclear explosions.

It is this Indian reality that must guide the direction of Indian science. Instead, what is observed is a lack of correspondence between the thrust of Indian science and the problems of the Indian people. Going by the expenditures on R & D, it appears that the bulk of the expenditure (about two-thirds) goes to the Defense Research and Development Organisation, Department of Space and Department of Atomic Energy, all of which have overt and/or covert military implications. Of the balance, a large percentage goes to industrial research, but this caters largely to the needs of the elite. In fact, going by the militarist-elitist expenditure pattern of Indian R & D, one would think that the primary problem of Indian society concern external security and upper class consumption wants, rather than poor health, illiteracy and basic needs.

This mis-orientation of Indian science is not a surprise. It follows from the fact that the country consists of small islands of urban splendour amidst vast oceans of rural misery. This situation is often referred to as a "dual society" - a small, politically powerful elite (constituting a mere 10-15% of the population and consisting of industrialists, landlords, bureaucrats, professionals and white-collar labour) living in conspicuous affluence amidst the abject poverty of the politically weak masses. The human rights if the poor have been ignored.

Scientists escape responsibility for the mis-direction of science by the clever excuse if the amorality and neutrality of science. For example, the well-known statement of the otherwise saintly, sincere and dedicated Kalam that "he is only an engineer" and that "his missile can also be used for delivering flowers".

The amorality and neutrality emerge from two conventional prescriptions for the relationship between the scientist (the subject) and the object of scientific study. Firstly, the scientist is urged to separate and distance himself/herself from the object of study even when the object is living. The second "commandment" for the scientist is to eschew feelings from the analysis so that the study is a cerebral non-subjective activity devoid of emotion and values. Thereby, science claims objectivity. Thus, modern science has been based on two dichotomies: (a) separation of the subject from the object and (b) separation of feelings and emotion (the non-cognitive self) from thought and analysis (the cognitive self). However, the first dichotomy leads inevitably to degradation of the objects of study (even humans) into things, and the second, to the removal of feelings for objects (plants, animals and finally human beings of different castes, tribes, nationalities and religions). The amorality of science stems from this isolation of the subject from the object and this removal or absence of emotions and feelings and values. And when the object of the study includes human beings, then the perception of people as "things", lead inevitably to science becoming the instrument of violence, oppression and evil. Hence, the roots of the disjunction between Indian science and morality go much deeper.

The submission here is that there is a way out of the moral dilemma. The relationship between the scientist (the subject) and the object of scientific study must be such that Initial separation (and distance) ends in subsequent unification (and embrace). Further, the suppression of emotion during analysis must give way to emotion after analysis. The functioning of scientists as individuals, groups and institutions must be constrained and limited by moral strictures and taboos. Otherwise, the synergism between the isolation of the subject from the object and the removal or absence of emotions and feelings leads inevitably to science becoming the instrument of violence, oppression and evil. Science, therefore, must not be neutral and amoral. It can be - and must be - encoded with life-affirming values, in particular, the rights of under-privileged human beings.

From this standpoint, there are no life-affirming values associated with the nuclear tests and the attitude of the Government to weaponization. In fact, if there are any values at all, they are life-destroying. And the Prime Jai Vigyan pronouncement is tantamount to eulogizing activities of science that can end up killing lakhs of non-combatants-children, women and men-in a nuclear attack. There is a pernicious values system underlying all this Jai Vigyan stuff which is only a ploy of the rulers to win over scientists to the militarization of Indian science. By going euphoric over science as an instrument of mega-death, the Government is sending a message commending the nexus between science and evil. The link between science and morality must be re-established.

A crucial safeguard is to insist that, quite apart from the top-down macro view of security, yields, kill-ratios, etc., there must be a bottom-up micro view based on human beings and their rights. we must see beyond the numbers and the statistics, we must see children and parents and grandparents, lovers and married couples, siblings, friends and comrades and above all the down-trodden.

The nuclear tests and threat of weaponization have exposed the serious weaknesses of Indian science. They have shown that Indian science is responding more to the militaristic and consumption ambitions of the elite than to the rights and problems of the poverty-stricken Indian masses. Rather than be a force that balances the demands of the state and civil society, the tests have revealed that Indian science has become a servant of the state whilst pressuring the state to advance the vested interests of Indian science and its scientists. The tests have revealed that the science-state nexus is strong. Indian science has betrayed the humanistic heritage left behind by Mahatma Gandhi and Lord Buddha. Sheltering behind the argument that science is amoral and neutral, Indian science may be come an instrument of violence, oppression and evil. It has not encoded itself with life-affirming values. Immediately after the nuclear tests, the majority of Indian scientists echoed the official line in a regimented fashion. They did not show the independence of perspective and diversity of views characteristic of a community of interacting scientists with the well-established traditions of science.

Is there hope for Indian science? Yes, and it is to be found in the movements of dissent that emerged from many scientific institutions after the nuclear test . If these "nuclei" grow and coalesce, then there is hope for a "phase transformation" through which the character of Indian science will change. Then, the poor and the meek shall inherit Indian science. The state will be enriched by having a significant fraction of scientists reflecting independent views through the institutions of civil society. The morality of Indian science will become a tribute to the legacy of Gandhi and Buddha.

Now that the tests are over and weaponization is on the agenda, Indian scientists must move forward. They must stop (a) the jingoistic exploitation of the nuclear and missile programme by forces with short-term political interests, (b) the erosion of democracy, (c) the further diversion of scientific talent away from the problems of the poor towards military applications of science and (d) an arms race with our neighbours. They must contribute to the process of international disarmament. And above, all they must turn their attention to the historic mission of giving all Indiansand particularly the underprivileged - a better life and least in the next century.

They have several roles as intelligent people privileged with technical training.

- they must spread awareness of the enormous consequences of the path the government may choose from the nuclear option to tested weapons to deployed weapons to weapons on hair-trigger alert. For example, the effects of one primitive Hiroshima-type bomb on Bangalore or Chennai or Calcutta or Delhi or Mumbai must be estimated and publicized. And independent calculations must be made of the financial costs of the ruinous path the country is being urged to choose.
- 2. They must build an independent peer group outside the establishment to verify the claims being made. Secretary stifles independence, erodes excellence and breeds mistakes (and even lies!). for example, independent estimates of the costs of nuclear power have already revealed serious flaws in DAE's costing. No establishments of prevent rigorous peer review.
- 3. They must reorient the thrust of Indian S & T. Unfortunately, this demand leads to the spotlight being turned on fundamental research which is asked to justify its usefulness. But, fundamental research accounts for less than 10-15% of the total expenditure. This share should be given no questions asked to the fundamental scientists. In return, all that must be insisted upon is that they set up and implement rigorous quality control measures and strive for excellence. The real accused is applied research and technology which consumes the bulk of the R & D funds. It must be carefully chosen to ensure that its thrust corresponds to the country's problems. And in the process it must not be forgotten that India is a dual society with a powerful elite and disempowered masses.
- 4. Scientists must be involved in new coalitions of people against the militaristic turn in the affairs of the nation. They must join forces with peace activists, development workers, environmentalists, women, dalits in fact, all those who are concerned about the future.

The Gandhi talisman must never be forgotten: "Recall the face of the poorest and most helpless person . . . and ask yourself if the step you contemplate is going to be of any use to him. Will he be able to gain anything from it? Will it restore to him control over his life and destiny?"

Amulya K N Reddy, President, International Energy Initiative. He holds a Doctorate in Applied Physical Chemistry from The Imperial College of Science and Technology, University of London. He is associated with a large number of scientific bodies and institutions in India and abroad. He was a professor at the Indian Institute of Science, Bangalore. He was also the Dean, Faculty of Science. He was visiting Senior Research Scientist, Centre for Energy and environmental Studies, Princeton University, Princeton, USA. He has also been at the University of Pennsylvania, USA. He has held positions of eminence in a number of institutions in India. He is the author and co-author of about three hundred papers on Electronic Chemistry and on Energy and Science & Technology. Dr. Amulya K. N. Reddy is a rare combination of eminence in science and commitment to social ethics and Human Right. -- General Secretary